ON AN ERGODIC THEOREM
FOR HOMOGENEOUS MARKOV CHAINS

S. V. NAGAEV

In this note we present a method for proving ergodic theorems that, in our view, is simpler than the approach contained in [1] (see also [2]).

Let \(\{X_n\}_{n=1}^\infty \) be a homogeneous Markov chain with transition function \(p(x, B) \), \(x \in X, B \in S \), where \((X, S)\) is a measurable space, and let \(p^{(n)}(x, B) \) be the transition function after \(n \) steps.

Assume that the chain \(\{X_n\} \) satisfies the following two conditions:

a) There exist an \(A \in S \), a nonnegative measure \(\varphi \) defined on \(AS \) and satisfying \(\varphi(A) > 0 \), and an \(n_0 \geq 1 \) such that for all \(x \in A \) and \(B \in AS \)
\[
p^{(n_0)}(x, B) \geq \varphi(B).
\]

b) For any \(x \)
\[
P_x\left(\bigcup_{1}^{\infty} \{X_n \in A\} \right) = 1.
\]

Here and in what follows, \(P_x \) denotes the probability in the space of sample functions under the assumption that the motion begins at the point \(x \). The conditions a) and b) are also imposed in [1], and they occur in equivalent form in [3] and [4].

Let us define a substochastic transition function \(\varphi(x, B) \) by the equalities \(\varphi(x, B) = \varphi(AB), x \in A \) and \(\varphi(x, B) = 0, x \in X \setminus A \). We set \(\omega(\cdot, \cdot) = p^{(n_0)}(\cdot, \cdot) - \varphi(\cdot, \cdot) \). For any measure \(\mu \) on \(S \) let
\[
\mu P(\cdot) = \int_X p(x, \cdot) \mu(dx).
\]

For any bounded \(S \)-measurable function \(f \) define
\[
Pf(\cdot) = \int_X f(x) p(\cdot, dx).
\]

The operators \(\Phi \) and \(\Omega \) corresponding to the transition functions \(\varphi \) and \(\omega \) are defined analogously. Let \(q(\cdot) = \sum_0^\infty \varphi \Omega^k(\cdot) \). Here \(\Omega^0 = E \), the identity operator. Denote by \(1_B(\cdot) \) the indicator function of \(B \), and let \(\omega^{(n)}(x, B) = \Omega^n 1_B(x) \).

Proposition. The additive set function \(q(\cdot) \) is an invariant measure for the operator \(P \), i.e., \(qP \equiv q \). Moreover,
\[
q(A) = 1.
\]

1980 Mathematics Subject Classification. Primary 28D99, 60J10; Secondary 60F15.
PROOF. Without loss of generality, it can be assumed that \(n_0 = 1 \). It is not hard to see that
\[
\varphi(A) \omega(k)(x, A) = \Omega^k \Phi_1 x(x),
\]
\[
\Phi_1 x = (P - \Omega^1) 1_x = (E - \Omega) 1_x.
\]
Consequently, for all \(N \geq 0 \)
\[
\varphi(A) \sum_{k=0}^{N} \omega(k)(x, A) = \sum_{k=0}^{N} \Omega^k (E - \Omega) 1_x(x) = 1 - \Omega^{N+1} 1_x(x).
\]
Let \(\{Y_n\}_{n=0}^{\infty} \) be a Markov chain with transition function \(\omega(x, B) \), and let \(n_k \) (respectively, \(N_k \)) be the number of times the chain \(\{Y_n\}_{n=0}^{\infty} (\{X_n\}_{n=0}^{\infty}) \) falls in \(A \) in \(k \) steps. It is not hard to see that \(P_x(n_k > m) \leq \alpha_m \) for any \(x \) and \(m \), where \(\alpha = 1 - \varphi(A) \). On the other hand, \(P_x(n_k < m) < P_x(N_k < m) \). In view of condition b), this means that
\[
\lim_{k \to \infty} P(n_k \leq m) = 0.
\]
Since
\[
\omega(k)(x, X) = P_x(n_k < m) + P_x(n_k > m),
\]
we get that \(\lim_{n \to \infty} \omega(n)(x, X) = 0 \). Returning to (3), we conclude that for any \(x \)
\[
\sum_{k=0}^{\infty} \omega(k)(x, A) = \frac{1}{\varphi(A)}.
\]
Integration of both sides of (4) with respect to \(\varphi \) gives (1).

Clearly, \(\varphi(\cdot) \) is countably additive. To prove that it is \(\sigma \)-finite we observe that for all \(m \) and \(N \)
\[
\sum_{k=0}^{N+m} \omega(k)(x, A) \geq \sum_{k=0}^{N} \int_{X} \omega(m)(y, A) \omega(k)(x, dy).
\]
Hence,
\[
\int_{X} \omega(m)(x, A) q_n(dx) \leq 1,
\]
where
\[
q_n(\cdot) = \sum_{k=0}^{N} \omega(k)(x, \cdot) \varphi(dx).
\]
Let \(f_m(x) = P_x(\min\{k \in A, k > 0\} = m) \) and \(B^n_m = \{x: f_m(x) \geq 1/n\} \). For any \(x \) we have \(\omega(m)(x, A) \geq f_m(x) \). By (5), this implies that \(q_n(B^n_m) \leq n \), and, consequently, \(q(B^n_m) \leq n \). On the other hand, \(X = \bigcup_{n,m} B^n_m \). Thus, \(q \) is a \(\sigma \)-finite measure.

It remains to verify that \(q \) is invariant. Obviously,
\[
\sum_{k=0}^{\infty} \varphi \Omega^k P = \sum_{k=0}^{\infty} \varphi \Omega^k (\Omega + \Phi) = \sum_{k=0}^{\infty} \varphi \Omega^k + \sum_{k=0}^{\infty} \varphi \Omega^k \Phi.
\]
Further,
\[
\varphi \Omega^k \Phi(\cdot) = \int_A \varphi(dx) \int_Y \omega(k)(x, dy) \varphi(y, \cdot) = \varphi(\cdot) \int_A \omega(k)(x, A) \varphi(dx).
\]
From (7) and (4) it follows that \(\sum_{k=0}^{\infty} \varphi \Omega^k \Phi = \varphi \). Returning now to (6), we conclude that
\[
\sum_{k=0}^{\infty} \varphi \Omega^k P = \sum_{k=0}^{\infty} \varphi \Omega^k, \text{ i.e., } qP = q, \text{ which is what was required.}
Theorem. If \(q(X) < \infty \), then for any \(x \)
\[
\lim_{n \to \infty} \sup_{B \in S} |p^{(n)}(x, B) - q(B)/q(X)| = 0.
\]

If \(q(X) = \infty \) and \(q(B) < \infty \), \(B \in S \), then for any \(x \)
\[
\lim_{n \to \infty} p^{(n)}(x, B) = 0.
\]

Proof. Without loss of generality it can be assumed that \(n_0 = 1 \). We make use of the identity
\[
(a + b)^n = a^n + \sum_{k=1}^{n} a^{n-k} b (a + b)^{k-1}, \quad n \geq 1,
\]
where \(a \) and \(b \) are elements of any ring.

Setting \(a = \Omega \) and \(b = \Phi \), we get
\[
P^n = \Omega^n + \sum_{k=1}^{n} \Omega^{n-k} \Phi P^{k-1}.
\]

Since for any \(k \) and \(j \)
\[
\int_X \omega^{(k)}(x, dy) \int_X p^{(j)}(y, B) \varphi(y, dz) = \omega^{(k)}(x, A) \int_A p^{(j)}(z, B) \varphi(dz),
\]

it follows from (8) that
\[
p^{(n)}(x, B) = \omega^{(n)}(x, B) + \sum_{k=1}^{n} \omega^{(n-k)}(x, A) p_{k-1}(B),
\]
where
\[
p_k(B) = \int_A p^{(k)}(z, B) \varphi(dz), \quad k \geq 1, p_0(B) = \varphi(AB).
\]

Integrating both sides of (9) with respect to the measure \(\varphi \), we have
\[
p_n(B) = \omega_n(B) + \sum_{k=1}^{n} \omega_{n-k}(A) p_{k-1}(B),
\]
where
\[
\omega_k(B) = \int_B \omega^{(k)}(x, B) \varphi(dx).
\]

This implies that if \(\sum_{k=1}^{\infty} \omega_k(B) < \infty \), then
\[
\lim_{n \to \infty} p_n(B) = \frac{1}{\mu} \sum_{k=0}^{\infty} \omega_k(B),
\]
where \(\mu = \sum_{k=1}^{\infty} (k+1) \omega_k(A) \), and \(1/\mu = 0 \) when \(\mu = \infty \).

By definition, \(\sum_{0}^{\infty} \omega_k(B) = q(B) \). If \(q(X) < \infty \), then the convergence in (10) is uniform with respect to \(B \in S \).
In view of (2),

\[\mu = \frac{1}{\varphi(A)} \sum_{k=0}^{\infty} (k+1) \varphi \Omega^k (E - \Omega) 1_x = \frac{1}{\varphi(A)} \sum_{k=0}^{\infty} \varphi \Omega^k 1_x = q(X)/\varphi(A). \]

The assertion of the theorem follows from (9)–(11) and (4).

Institute of Mathematics
Siberian Branch, Academy of Sciences of the USSR

Received 6/AUG/81

BIBLIOGRAPHY

4. S. V. Nagaev, Sibirsk. Mat. Ž. 6 (1965), 413. (Russian)

Translated by H. H. McFADEN