On completely regular codes in Johnson graphs $J(2w+1,w)$ with covering radius 1

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

Sobolev Institute of Mathematics
Novosibirsk State University e-mails: avgust@math.nsc.ru, ivmog84@gmail.com

Presented at ACCT ’10, 7 September 2010
Code in graph

Code C in a graph G is a collection of vertices of G.

Distance $d(x,y)$ between two vertices x, y is the number of edges in the shortest path, connecting x and y.

Covering radius ρ of code C in graph G is a maximum distance from a vertex of graph to the code C:

$$\rho = \max \{ d(x, C) : x \in V(G) \}.$$
Code C in a graph G is a collection of vertices of G.

Distance $d(x,y)$ between two vertices x, y is the number of edges is the shortest path, connecting x and y.

Covering radius ρ of code C in graph G is a maximum distance from a vertex of graph to the code C:

$$\rho = \max \{ d(x, C) : x \in V(G) \}.$$
Code
C in a graph G is a collection of vertices of G.

Distance $d(x,y)$ between two vertices x, y is the number of edges in the shortest path, connecting x and y.

Covering radius ρ of code C in graph G is a maximum distance from a vertex of graph to the code C:

$$\rho = \max\{d(x, C) : x \in V(G)\}.$$
A code C is called completely regular, if for any fixed i, $0 \leq i \leq \rho(C)$ the numbers $d_i^+(x)$, $d_i^0(x)$, $d_i^-(x)$ does not depend on choice of x from C_i.

Intersection array of completely regular code C:
$\{d_1^-, \ldots, d_\rho^-, d_0^+, \ldots, d_{\rho-1}^+\}$.
Completely regular code

\[C_i = \{ x \in V(G) : d(x, C) = i \}, \ 0 \leq i \leq \rho. \]

For \(x \) from \(C_i \) denote with \(d_i^+(x), d_i^0(x), d_i^-(x) \) the number of vertices from \(C_{i+1}, C_i \) and \(C_{i-1} \) that are adjacent with \(x \).

A code \(C \) is called **completely regular**, if for any fixed \(i, \ 0 \leq i \leq \rho(C) \) the numbers \(d_i^+(x), d_i^0(x), d_i^-(x) \) does not depend on choice of \(x \) from \(C_i \).

Intersection array of completely regular code \(C \):
\[\{ d_1^-, \ldots, d_\rho^-, d_0^+, \ldots, d_{\rho-1}^+ \} \].
Completely regular code

\[C_i = \{ x \in V(G) : d(x, C) = i \}, \ 0 \leq i \leq \rho. \]

For \(x \) from \(C_i \) denote with \(d_i^+(x), d_i^0(x), d_i^-(x) \) the number of vertices from \(C_{i+1}, C_i \) and \(C_{i-1} \) that are adjacent with \(x \).

A code \(C \) is called **completely regular**, if for any fixed \(i, 0 \leq i \leq \rho(C) \) the numbers \(d_i^+(x), d_i^0(x), d_i^-(x) \) does not depend on choice of \(x \) from \(C_i \).

Intersection array of completely regular code \(C \):
\[\{ d_1^-, \ldots, d_\rho^-, d_0^+, \ldots, d_{\rho-1}^+ \}. \]
Completely regular code

\[C_i = \{ x \in V(G) : d(x, C) = i \}, \quad 0 \leq i \leq \rho. \]

For \(x \) from \(C_i \) denote with \(d_i^+(x), d_i^0(x), d_i^-(x) \) the number of vertices from \(C_{i+1}, C_i \) and \(C_{i-1} \) that are adjacent with \(x \).

A code \(C \) is called **completely regular**, if for any fixed \(i, 0 \leq i \leq \rho(C) \) the numbers \(d_i^+(x), d_i^0(x), d_i^-(x) \) does not depend on choice of \(x \) from \(C_i \).

Intersection array of completely regular code \(C \):
\[\{ d_1^-, \ldots, d_\rho^-, d_0^+, \ldots, d_{\rho-1}^+ \}. \]
Johnson and Kneser graphs

Johnson graph $J(n,w)$

$V = \{ x \subset \{1, \ldots, n\} : |x| = w \}.$
$E = \{ (x, y) : |x \cap y| = w - 1 \}.$

Kneser graph $K(n,w)$

$V = \{ x \subset \{1, \ldots, n\} : |x| = w \}.$
$E = \{ (x, y) : |x \cap y| = 0 \}.$
Johnson graph $J(n,w)$

$V = \{ x \subset \{1, \ldots, n\} : |x| = w \}.$

$E = \{ (x, y) : |x \cap y| = w - 1 \}.$

Kneser graph $K(n,w)$

$V = \{ x \subset \{1, \ldots, n\} : |x| = w \}.$

$E = \{ (x, y) : |x \cap y| = 0 \}.$
Completely regular codes in \(J(2w + 1, w) \) with covering radius 1
Completely regular codes in $J(2w + 1, w)$ and $K(2w + 1, w)$

From work by Neumaier \(^1\) we get:

Statement

A code C in $J(2w + 1, w)$ with $\rho = 1$ is completely regular iff C is completely regular code with $\rho = 1$ in $K(2w + 1, w)$.

Completely regular code in $J(9, 4)$ with array \(\{d_1^- = 15, d_0^+ = 6\} \)

exists iff exists completely regular code in $K(9, 4)$ with array \(\{d_1^- = 5, d_0^+ = 2\} \).
Completely regular codes in Johnson and Kneser graphs with $\rho = 1$

One sporadic construction

Completely regular codes with $\rho = 1$ from $(w-1) - (n, w, 1)$-designs

Completely regular codes in $J(9,4)$ with $\rho = 1$

Alltop’s extension constructions

CRC in $K(9,4)$ with array $\{d_1^- = 5, d_0^+ = 2\}$

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

On completely regular codes in Johnson graphs $J(2w+1, w)$ with
CRC in $K(9, 4)$ with array $\{d_1^-=5, d_0^+=2\}$

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh

On completely regular codes in Johnson graphs $J(2w+1, w)$ with...
CRC in $K(9, 4)$ with array $\{d_1^{-} = 5, d_0^{+} = 2\}$

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_3</th>
<th>C_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>$3'$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>$2e$</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>$2e$</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
<td>$2'$</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>$3e$</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>$2'$</td>
</tr>
</tbody>
</table>

"Orbits":

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
CRC in $K(9,4)$ with array $\{d_1^- = 5, d_0^+ = 2\}$

\[
\begin{array}{c|ccc}
C_1 & C_3 & C_5 \\
\hline
1 & 0 & 0 & 4 \\
2 & 1 & 0 & 3 \\
3 & 0 & 1 & 3' \\
4 & 1 & 1 & 2e \\
5 & 0 & 2 & 2e \\
6 & 0 & 2 & 2' \\
7 & 1 & 2 & 1 \\
8 & 1 & 3 & 0 \\
9 & 0 & 3 & 1 \\
10 & 0 & 1 & 3e \\
11 & 1 & 1 & 2' \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
1 & * & * & * & * & * & * & * & * & * & 1 & 1 & 0 & 0 \\
2 & * & * & * & * & * & * & 0 & 2 & 0 & 0 \\
3 & * & * & * & * & * & 0 & 0 & 0 & 2 \\
4 & * & * & * & * & * & 0 & 0 & 2 & 0 \\
5 & * & * & * & * & * & 0 & 1 & 1 \\
6 & * & * & * & * & * & 0 & 0 & 2 & 0 \\
7 & * & * & * & * & * & 0 & 0 & 0 & 0 \\
8 & * & * & * & * & * & 0 & 0 & 0 & 0 \\
9 & * & * & * & * & * & 0 & 0 & 0 & 0 \\
10 & * & * & * & * & * & 0 & 0 & 0 & 0 \\
11 & * & * & * & * & * & 0 & 0 & 0 & 0 \\
\end{array}
\]
CRC in $K(9, 4)$ with array $\{d_1^- = 5, d_0^+ = 2\}$

Completely regular code in Kneser graph $K(9, 4)$ with intersection array:

$\{d_1^- = 5, d_0^+ = 2\}$

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh
Completely regular codes in Johnson and Kneser graphs with $\rho = 1$

One sporadic construction

Completely regular codes with $\rho = 1$ from $(w-1)-(n, w, 1)$-designs

Completely regular codes in $J(9,4)$ with $\rho = 1$

Alltop’s extension constructions

CRC in $K(9,4)$ with array $\{d_1^{-} = 5, d_0^{+} = 2\}$

Completely regular code in Johnson graph $J(9,4)$ with intersection array:

$$\left\{ d_1^{-} = 15, \ d_0^{+} = 6 \right\}$$
Completely regular codes from \((w - 1) - (n, w, 1)\)-designs

Theorem (Martin ’98)

Any simple \((w - 1) - (n, w, \lambda)\)-design is completely regular in \(J(n, w)\) with \(\rho = 1\).
Theorem

Let C be a $(w - 1) - (n, w, 1)$-design. Then code

$\tilde{C} = \{x : x \subset \{1, \ldots, n\}, |x| = w + 1, \exists y \in C : y \subset x\}$ is completely regular in $J(n, w + 1)$ with $\rho = 1$.
Eigenvector of a graph

Let G be a graph. Define the adjacency matrix of graph G as matrix M:

$M_{xy} = 1$, if $(x, y) \in E$,

$M_{xy} = 0$, otherwise.

Eigenvector u of graph G is an eigenvector of adjacency matrix of G.
Let G be a graph. Define the \textit{adjacency matrix} of graph G as matrix M:

$M_{xy} = 1$, if $(x, y) \in E$,

$M_{xy} = 0$, otherwise.

\textit{Eigenvector u of graph G} is an eigenvector of adjacency matrix of G.
Let u be an eigenvector of $J(n, w)$. Define the vector \hat{u}, such that for any vertex x of graph $J(n, w')$, $w < w'$

$$\hat{u}_x := \sum_{y \subseteq x} u_y$$

Theorem, Godsil, ”Association schemes”
If u is eigenvector of $J(n, w)$ then \hat{u} is eigenvector of $J(n, w')$.
Eigenvectors of Johnson graphs

Let u be an eigenvector of $J(n, w)$. Define the vector \hat{u}, such that for any vertex x of graph $J(n, w')$, $w < w'$

$$\hat{u}_x := \sum_{y \subset x} u_y$$

Theorem, Godsil, ”Association schemes”

If u is eigenvector of $J(n, w)$ then \hat{u} is eigenvector of $J(n, w')$.
Eigenvectors of graphs and completely regular codes with covering radius 1

Lemma (Folklore)

Any completely regular code in G with covering radius 1 is eigenvector of graph G, which coordinates takes two different values per se.
The only completely regular codes with $\rho = 1$ to exist in $J(9, 4)$ are codes with the following intersection arrays:

\begin{itemize}
 \item $\{d_1^- = 4, d_0^+ = 5\}$, Code is $\{x : i \in x\}, i \in \{1, \ldots, 9\}$
 \item $\{d_1^- = 15, d_0^+ = 6\}$, “Sporadic” code,
 \item $\{d_1^- = 12, d_0^+ = 9\}$, Code from STS(9).
\end{itemize}
Alltop’s extension constructions

Let C be a $t - (2w + 1, w, \lambda)$-design.

$$C' = \{x \cup 2w + 2 : x \in C\},$$

$$C'' = \{\{1, \ldots, 2w + 1\} \setminus x : x \in C\},$$

Theorem (Alltop, 1975)

Let C be a $t - (2w + 1, w, \lambda)$-design with $t \equiv 0 (mod 2)$. Then $C' \cup C''$ is a $t + 1 - (2w + 2, w + 1, \lambda)$-design.

Proposition

Let C be a completely regular code in $J(2w + 1, w)$ with $\rho = 1$. Then code $C' \cup C''$ is completely regular in $J(2w + 2, w + 1)$ with $\rho = 1$.

Sergey V. Avgustinovich, Ivan Yu. Mogilnykh
Alltop’s extension constructions

Let C be a $t-(2w+1, w, \lambda)$-design.

$$C' = \{x \cup 2w + 2 : x \in C\},$$

$$C'' = \left\{\{1, \ldots, 2w + 1\} \setminus x : x \in C\right\},$$

Theorem (Alltop, 1975)

Let C be a $t-(2w+1, w, \lambda)$-design with $t \equiv 0(\text{mod}2)$. Then $C' \cup C''$ is a $t+1-(2w+2, w+1, \lambda)$-design.

Proposition

Let C be a completely regular code in $J(2w+1, w)$ with $\rho = 1$. Then code $C' \cup C''$ is completely regular in $J(2w+2, w+1)$ with $\rho = 1$.
Alltop’s extension constructions

Let \(C \) be a \(t-(2w+1, w, \lambda) \)-design.

\[
C' = \{ x \cup 2w + 2 : x \in C \},

C'' = \{ \{1, \ldots, 2w + 1\} \setminus x : x \in C \},

\overline{C} = \{ x \subset \{1, \ldots, 2w + 1\} : |x| = w, x \notin C \}.
\]

Theorem (Alltop, 1975)

Let \(C \) be a \(t-(2w+1, w, \lambda) \)-design with \(t \equiv 1 (mod 2) \), \(|C| = \binom{2w+1}{w}/2 \). Then \(C' \cup \overline{C}'' \) is a \(t+1-(2w, w, \lambda) \)-design.

Proposition

Let \(C \) be a completely regular code in \(J(2w+1, w) \) with \(\rho = 1 \) such that \(|C| = \binom{2w+1}{w}/2 \). Then code \(C' \cup \overline{C}'' \) is completely regular in \(J(2w+2, w+1) \) with \(\rho = 1 \).
Alltop’s extension constructions

Let C be a $t - (2w + 1, w, \lambda)$-design.

$$C' = \{x \cup 2w + 2 : x \in C\},$$

$$C'' = \{{1, \ldots, 2w + 1} \setminus x : x \in C\},$$

$$\overline{C} = \{x \subset {1, \ldots, 2w + 1} : |x| = w, x \notin C\}.$$

Theorem (Alltop, 1975)

Let C be a $t - (2w + 1, w, \lambda)$-design with $t \equiv 1 (mod 2)$, $|C| = (2w+1)/2$. Then $C' \cup \overline{C''}$ is a $t + 1 - (2w, w, \lambda)$-design.

Proposition

Let C be a completely regular code in $J(2w + 1, w)$ with $\rho = 1$ such that $|C| = (2w+1)/2$. Then code $C' \cup \overline{C''}$ is completely regular in $J(2w + 2, w + 1)$ with $\rho = 1$.
Extension of completely regular codes in $J(9, 4)$

Completely regular code in $J(9, 4)$ with intersection array
\(\{d_1^- = 15, d_0^+ = 6\} \) is extended to completely regular code in $J(10, 5)$ with intersection array \(\{d_1^- = 20, d_0^+ = 8\} \).

Completely regular code in $J(9, 4)$ with intersection array
\(\{d_1^- = 12, d_0^+ = 9\} \) is extended to completely regular code in $J(10, 5)$ with intersection array \(\{d_1^- = 16, d_0^+ = 12\} \).
Extension of completely regular codes in $J(9, 4)$

Completely regular code in $J(9, 4)$ with intersection array
$\{d^-_1 = 15, d^+_0 = 6\}$ is extended to completely regular code in
$J(10, 5)$ with intersection array $\{d^-_1 = 20, d^+_0 = 8\}$.

Completely regular code in $J(9, 4)$ with intersection array
$\{d^-_1 = 12, d^+_0 = 9\}$ is extended to completely regular code in
$J(10, 5)$ with intersection array $\{d^-_1 = 16, d^+_0 = 12\}$.
Studied completely regular codes with $\rho = 1$ in $J(2w + 1, w)$

Enumerated intersection arrays of completely regular codes in Johnson graph $J(9, 4)$ with $\rho = 1$

New construction of completely regular codes from $(w - 1) - (n, w, 1)$-designs

Alltop’s extension constructions applied to completely regular codes in $J(2w + 1, w)$ with $\rho = 1$ give completely regular codes with $\rho = 1$ in $J(2w + 2, w + 1)$
Conclusion

Studied completely regular codes with $\rho = 1$ in $J(2w + 1, w)$

Enumerated intersection arrays of completely regular codes in Johnson graph $J(9, 4)$ with $\rho = 1$

New construction of completely regular codes from $(w - 1) - (n, w, 1)$-designs

Alltop’s extension constructions applied to completely regular codes in $J(2w + 1, w)$ with $\rho = 1$ give completely regular codes with $\rho = 1$ in $J(2w + 2, w + 1)$
Conclusion

Studied completely regular codes with \(\rho = 1 \) **in** \(J(2w + 1, w) \)

Enumerated intersection arrays of completely regular codes in
Johnson graph \(J(9, 4) \) **with** \(\rho = 1 \)

New construction of completely regular codes from
\((w - 1) - (n, w, 1)\)-**designs**

Alltop’s extension constructions applied to completely regular codes in \(J(2w + 1, w) \) **with** \(\rho = 1 \) **give completely regular codes with** \(\rho = 1 \) **in** \(J(2w + 2, w + 1) \)
Studied completely regular codes with $\rho = 1$ in $J(2w + 1, w)$

Enumerated intersection arrays of completely regular codes in Johnson graph $J(9, 4)$ with $\rho = 1$

New construction of completely regular codes from $(w - 1) - (n, w, 1)$-designs

Alltop’s extension constructions applied to completely regular codes in $J(2w + 1, w)$ with $\rho = 1$ give completely regular codes with $\rho = 1$ in $J(2w + 2, w + 1)$
Thank you for your attention