ON A CLASS OF GRIESMER CODES RELATED TO CAPS

Assia Rousseva Sofia University

Ivan Landjev
Institute of Mathematics and Informatics, BAS

1. Preliminaries

 \mathbb{F}_q , $q=p^r$, p - prime, the field with q elements

Definition. A multiset in PG(k-1,q) is a mapping

$$\mathcal{K}: \left\{ \begin{array}{ccc} \mathcal{P} & \to & \mathbb{N}_0, \\ P & \to & \mathcal{K}(P). \end{array} \right.$$

 $\mathcal{K}(P)$ – the **multiplicity** of the point P.

$$\mathcal{Q} \subset \mathcal{P}$$
: $\mathcal{K}(\mathcal{Q}) = \sum_{P \in \mathcal{Q}} \mathcal{K}(P)$.

 $\mathcal{K}(\mathcal{P})$ – the cardinality of \mathcal{K} .

Points, lines, ..., hyperplanes of multiplicity i are called i-points, i-lines, ..., i-hyperplanes.

 a_i – the number of i-hyperplanes

 $(a_i)_{i>0}$ – the **spectrum** of ${\mathcal K}$

Definition. (n, w)-arc in PG(k-1, q): a multiset K with

- 1) $\mathcal{K}(\mathcal{P}) = n$;
- 2) for every hyperplane $H: \mathcal{K}(H) \leq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. (n, w)-blocking set with respect to hyperplanes in PG(k-1,q) (or (n,w)-minihyper): a multiset $\mathcal K$ with

- 1) $\mathcal{K}(\mathcal{P}) = n$;
- 2) for every hyperplane $H: \mathcal{K}(H) \geq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

2. Arcs and linear codes

Theorem. The existence of an $[n, k, d]_q$ -code of full length is equivalent to that of an (n, n-d)-arc in PG(k-1, q).

- $\diamond C [n, k, d]_q$ -code with $n = t + g_q(k, d)$;
- $\diamond \mathcal{K}$ (n, n-d)-arc associated with C;
- $\diamond \gamma_i :=$ maximal multiplicity of an i-dimensional subspace of $\mathrm{PG}(k-1,q)$, $i=0,1,\ldots,k-1$,

$$\gamma_i \le t + g_q(i+1,d).$$

Problem A. For given k, d and q find the smallest value of n for which there exists an $[n, k, d]_q$ -code.

The **Griesmer** bound:

$$n_q(k,d) \ge g_q(k,d) = \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil$$

Problem B. Characterize geometrically all Griesmer codes with given parameters k,d and q. Equivalently: Characterize all minihypers in $\mathrm{PG}(k-1,q)$ with

$$\left(\sum_{i=0}^{k-2} \epsilon_i v_{i+1}, \sum_{i=0}^{k-2} \epsilon_i v_i, \right), 0 \le \epsilon_i \le q-1,$$

where $v_i = (q^i - 1)/(q - 1)$.

- probably hopeless in all generality
- Belov, Logachev, Sandimirov, 1974
- N. Hamada, T. Helleseth
- R. Hill
- T. Maruta
- L. Storme, J. De Beule, P. Govaerts et al.
- A. Klein, Kl. Metsch and many others

3. Characterization of the (102, 26)-arcs in PG(3, 4)

3.1. The (101, 26)- and (102, 26)-arcs in PG(3, 4)

Theorem. There exists exactly one (102, 26)-arc in PG(3, 4). It is obtained as the sum of an ovoid and the complete space.

Spectrum:

$$a_{22} = 17, a_{26} = 68, \ \lambda_0 = 0, \lambda_1 = 68, \lambda_2 = 17.$$

Theorem. Every (101,26)-arc in PG(3,4) is extendable to a (102,26)-arc.

d	$g_4(5,d)$	$n_4(5,d)$	(n,w) -arc ${\cal K}$	$\mathcal{K} _H$
297	398	399	(399,101)-arc	
298	399	400	(400,101)-arc	(101,26)-arc
299	400	401	(401,101)-arc	in $\operatorname{PG}(3,4)$
300	401	402	(402,101)-arc	
301	403	404	(404,102)-arc	
302	404	405	(405,102)-arc	(102,26)-arc
303	405	406	(406,102)-arc	in $\operatorname{PG}(3,4)$
304	406	407	(407,102)-arc	

Open problem. Characterize geometrically the arcs with parameters

$$(q^3 + 2q^2 + q + 2, q^2 + 2q + 2)$$
 in $PG(3, q), q > 2$.

These arcs are associated with Griesmer codes with parameters

$$[q^3 + 2q^2 + q + 2, 4, q^3 + q^2 - q]_q$$
.

An obvious construction: the sum of an ovoid and the whole space PG(3,q).

The question is: are there other constructions?

- In PG(3,3): We have two (50,17)-arcs:
- (a) the sum of a cap and the whole space;
- (b) two copies of PG(3,3) minus two different planes π_0, π_1 minus a line (skew to the line $\ell = \pi_0 \cap \pi_1$).
- In PG(3,4): There is exacly one (102,26)-arc and it is the sum of an ovoid and the whole space.
- In PG(3,5): There is exactly one (182,37)-arc and it is the sum of an ovoid and the whole space.

Conjecture. (At least) for every prime $p \geq 5$ there is a unique arc with parameters $(p^3 + 2p^2 + p + 2, p^2 + 2p + 2)$ in PG(3, p). It is obtained as the sum of an ovoid and the whole space.

How can one prove this?

3.2. Reducibility of plane (x(q+1)+1,x)-minihypers

The planes of maximal multiplicity have parameters $(q^2 + 2q + 2, q + 3)$.

The existence of such arcs is equivalent to that of minihypers with parameters $(q^2, q - 1)$ (with maximal multiplicity of a point equal to 2).

These parameters can be written as (x(q+1)+1,x) with x=q-1.

Reducible (x(q+1)+1,x)-minihypers. can be obtained from (x(q+1),x)-minihypers by adding a point.

- R. Hill, H.N Ward
- I. Landjev, L. Storme

Irreducible (x(q+1)+1,x)-minihypers.

- \circ the complement of an oval for all odd q
- \circ for q=4: one irreducible (16,3)-minihyper
- \circ for q=5: one further irreducible minihyper with $\lambda_2=2, \lambda_0=8$.

(16,3)-minihyper in PG(2,4)

(25,4)-minihyper in PG(2,5)

