On perfect 2-colorings of infinite circulant graphs with a continuous set of odd distances

Olga Parshina

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Institut Camille Jordan UCBL1, Lyon, France

joint work with Maria Lisitsyna
On equitable 2-partitions of infinite circulant graphs with a continuous set of odd distances

Olga Parshina

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

Institut Camille Jordan UCBL1, Lyon, France

joint work with Maria Lisitsyna
Let $G = (V, E)$ be a graph, and k be a positive integer.

- Consider a **partition** of the set of vertices $V = V_1 \cup V_2 \cup \cdots V_k$ of the graph G into k pairwise disjoint subsets (**k-partition**).

- A k-partition is called **equitable** if every vertex of V_i has exactly m_{ij} neighbors of V_j.

- The matrix $M = (m_{ij})$ is the **quotient matrix** of equitable k-partition.

\[
\begin{pmatrix}
g & r & b \\
1 & 3 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2 \\
\end{pmatrix}
\]
Perfect colorings

Let $G = (V, E)$ be a graph, and k be a positive integer

- A **coloring** of the vertices of the graph G with k colors (**k-coloring**) is a map
 $$\varphi : V \rightarrow \{1, 2, \ldots, k\}$$

- A vertex $v \in V$ is said to be of **color** s, if $\varphi(v) = s$

- A k-coloring is called **perfect** with parameter matrix $M = (m_{ij})$ if for each vertex of color i the number of adjacent vertices of color j is equal to m_{ij}.

$$M = \begin{pmatrix}
g & r & b \\
1 & 3 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{pmatrix}$$
Perfect colorings

- A coloring \(\varphi \) is periodic if there exists \(t \in \mathbb{N} \) s.t.
 \(\varphi(v_i) = \varphi(v_{i+t}) \) for every vertex \(v_i \)
- The sequence \(T = [\varphi(v_i) \varphi(v_{i+1}) \varphi(v_{i+2}) \ldots \varphi(i+t-1)] \), is called the period of the coloring \(\varphi \)
- The length of the period \(T \) is \(t \)

Example

Cycle graph

\[T = [bbr] \]
A **finite circulant of length** t is a pseudograph $Ci_t(d_1, d_2, ..., d_n) = (V, E)$ with the set of vertices $V = \mathbb{Z}_t$ and the set of edges $E = \{(i, i \pm dj \mod t) | i \in \mathbb{Z}_t, j = 1, ..., n\}$.

Examples

$Ci_6(1, 2, 4)$

$Ci_4(1, 2, 3)$
Circulants

An infinite circulant graph is a graph $Ci_\infty(d_1, d_2, \ldots, d_n) = (V, E)$ with the set of vertices $V = \mathbb{Z}$ and the set of edges $E = \{(i, i \pm d_j) | i \in \mathbb{Z}, j = 1, \ldots, n\}$.

Example

$Ci_\infty(1, 2, 4)$

Circulants

A perfect coloring of a finite circulant graph $Ci_t(d_1, d_2, ..., d_n)$ induce the perfect coloring of a graph $Ci_\infty(d_1, d_2, ..., d_n)$ with the same parameter matrix.

Example

$Ci_\infty(1, 2, 4), \ T = [rgbgr]$

$M = \begin{pmatrix}
1 & 3 & 2 \\
3 & 0 & 3 \\
2 & 3 & 1
\end{pmatrix}$
Circulants

Let $n \in \mathbb{N}$. We consider the following infinite graphs:

- $Ci_\infty(1, 2, 3, \ldots, n)$
- $Ci_\infty(1, 3, 5 \ldots, 2n - 1)$

Examples

\[Ci_\infty(1, 3) \]

\[Ci_\infty(1, 2, 3) \]
Perfect colorings of infinite path graph

The infinite path graph is $C_{i\infty}(1)$

Proposition

For every $k \in \mathbb{N}$ the list of perfect colorings of $C_{i\infty}(1)$ is exhausted by colorings with the following periods:

- $[123...k]$
- $[123...(k - 1)k(k - 1)...32]$
- $[123...(k - 1)k(k - 1)...321]$
- $[123...(k - 1)kk(k - 1)...321]$

Let k and n be positive integers. The set of perfect k-colorings of the graph $Ci_{\infty}(1, 2, 3, \ldots, n)$ consists of all perfect k-colorings of graphs $Ci_t(1, 2, 3, \ldots, n)$ for $t = 2n, 2n + 1, 2n + 2$, and perfect colorings of the infinite path graph.

P. (2014)

The conjecture is true in case $k = 2$, $n \in \mathbb{N}$.

Lisitsyna, P. (2017)

The conjecture is true in case $n = 2$, $k \in \mathbb{N}$.
Conjecture

Let \(k \) and \(n \) be positive integers. The set of perfect \(k \)-colorings of the graph \(Ci_{\infty}(1, 3, 5, ..., 2n - 1) \) consists of all perfect \(k \)-colorings of graphs \(Ci_t(1, 3, 5, ..., 2n - 1) \) for \(t = 4n, 4n \pm 2 \), and perfect colorings of the infinite path graph.

The conjecture is true for \(k = 2 \) and arbitrary positive integer \(n \).
Theorem [Lisitsyna, P.]

Let n be a positive integer. The set of perfect 2-colorings of the graph $C_{i\infty}(1, 3, 5, ..., 2n - 1)$ consists of all perfect 2-colorings of graphs $C_{i_t}(1, 3, 5, ..., 2n - 1)$ for $t = 4n, 4n \pm 2$, and perfect colorings of the infinite path graph.

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a + b = c + d = 2n \implies M = \begin{pmatrix} 2n - b & b \\ c & 2n - c \end{pmatrix}$$

Parameters b and c are the outer degrees of colors 1 and 2 respectively.
Sketch of the proof
Sketch of the proof
Sketch of the proof
Sketch of the proof

\[\bullet, \circ \in \{ \color{red}\bullet, \circ \} \]
Sketch of the proof
Sketch of the proof

\[
\begin{align*}
\begin{pmatrix} c & b \\ c & b \end{pmatrix} & \quad \text{red blue} \\
\begin{pmatrix} c & b \\ c & b \end{pmatrix} & \quad c + b = 2n
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix} c + 1 & b \\ c & b + 1 \end{pmatrix} & \quad \text{red blue} \\
\begin{pmatrix} c & b \\ c & b - 1 \end{pmatrix} & \quad c + b = 2n + 1
\end{align*}
\]
\[b + c = 2n \]

The coloring is periodic with the length of period \(t = 4n \).

Example, \(n = 2 \)

\[Ci_8(1, 3) \]
$$b + c = 2n + 1$$
Suppose, that the length of a period of the coloring is \(t = 2n + 1 \)

Example, \(n=2 \)
\[b + c = 2n + 1 \]

Example, \(n=2 \)
$b + c = 2n + 1$

Example, $n=2$
\[b + c = 2n + 1 \]

Example, \(n=2 \)
$b + c = 2n + 1$

Example, $n=2$

$(2n - 1)$-chain
Example, $n=2$
\[b + c = 2n + 1 \]

Example, \(n=2 \)
\[b + c = 2n + 1 \]

Example, \(n=2 \)
$b + c = 2n + 1$

Example, $n=2$
$b + c = 2n + 1$

Example, $n=2$
\[b + c = 2n + 1 \]

\[\#\text{red} = \#\text{blue} \Rightarrow b = c \]
\[b + c = 2n + 1 \]

The coloring is periodic with the length of period \(t = 2n + 1 \).

Example, \(n=2 \)

\[Ci_{10}(1, 3) \]

\[Ci_{\infty}(1, 3) \]
$b + c = 2n - 1$

The coloring is periodic with the length of period $t = 2n - 1$.

Example, $n = 2$

$Ci_6(1, 3)$
Theorem [Lisitsyna, P.]

Let n be a positive integer. The set of perfect 2-colorings of the graph $C_{i\infty}(1, 3, 5, \ldots, 2n - 1)$ consists of all perfect 2-colorings of graphs $C_{i\,t}(1, 3, 5, \ldots, 2n - 1)$ for $t = 4n, 4n \pm 2$, and perfect colorings of the infinite path graph.
Conjecture on $Ci_{\infty}(1, 2, 3, \ldots, n)$

Let k and n be positive integers. The set of perfect k-colorings of the graph $Ci_{\infty}(1, 2, 3, \ldots, n)$ consists of all perfect k-colorings of graphs $Ci_t(1, 2, 3, \ldots, n)$ for $t = 2n, 2n + 1, 2n + 2$, and perfect colorings of the infinite path graph.

Conjecture on $Ci_{\infty}(1, 3, 5, \ldots, 2n − 1)$

Let k and n be positive integers. The set of perfect k-colorings of the graph $Ci_{\infty}(1, 3, 5, \ldots, 2n − 1)$ consists of all perfect k-colorings of graphs $Ci_t(1, 3, 5, \ldots, 2n − 1)$ for $t = 4n, 4n \pm 2$, and perfect colorings of the infinite path graph.
Thank you for your attention!