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Abstract

The Monster group M contains a pair {C,N} of subgroups, where C ∼ 21+24+ .Co1 is the central-

izer of an involution and N ∼ 22+11+2·11.(M24 ×Sym3) is the normalizer of an elementary subgroup
of order four with N ∩C having index three in N . The amalgam {C,N} plays an important role in the
existing constructions and uniqueness proofs for the Monster. We suggest a transparent construction
of this amalgam.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

The first evidence for the existence of the Monster group M was given independently by
B. Fischer and R. Griess in 1973. During the 1970s a number of properties of the predicted
group were unearthed (but mostly left unpublished) including (1) the lower bound 196,883
for the degree of a faithful complex representation; (2) the structure

C ∼ 21+24+ .Co1

of the centralizer in M of a central involution z and (3) the structure
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N ∼ 22+11+2·11.(M24 × Sym3)

of the normalizer in M of an elementary subgroup 〈z, t〉 of order 4 (here t is a conjugate
of z contained in O2(C) \ Z(C)).

In 1979 J.G. Thompson [13] has shown that the amalgam {C,N} possesses (up to equiv-
alence) at most one complex representation of degree 196,883. Thus he has established the
uniqueness of the Monster subject to the condition that the lower bound for the minimal
degree is attained.

In 1982 R. Griess [6] published an existence proof for the Monster which can be viewed
as Thompson’s uniqueness proof brilliantly transformed into a construction: Griess pro-
duces a 196,883-dimensional representation of C; adjoins an element σ which conjugates
z to t and together with C ∩ N generates (a representation of ) N and proves that the rep-
resentations of C and N generate the Monster (inside the corresponding general linear
group).

J. Tits [14] suggested extending C ∩ N to N in one go instead of adjoining a particu-
lar element σ . Starting with CC(t) (instead of N ∩ C) one deals with a normal extension.
In part III of [14] (where D = CC(t) and D# = {z0, z1, z2}) it is stated as Proposition 1
that (i) every automorphism of D fixing each zi is inner, and (ii) the group D possesses
automorphisms permuting z0, z1, z2 cyclically. After the proposition one reads ‘The proof
will be omitted in the present sketch, but I should emphasize that it does not necessitate
the explicit construction of such an automorphism (it suffices for instance to give a char-
acterization of D in which the zi ’s play a symmetric role). Experience shows that explicit
choices are a source of complications (e.g. sign complications).’ We present here a proof
of Tits’ Proposition 1 which is indeed achieved via a characterization of D/Z(D) from
which the triality symmetry shows up.

J.H. Conway [2] gave a description of N in terms of Parker’s loop. This description
manifestly possesses a triality symmetry. Within Conway’s approach the harder part of the
construction lies within the identification of the two appearances of C ∩ N (as a subgroup
of C and as a subgroup of N ). Chapter 4 of M. Aschbacher’s book [1] ‘places the Conway
construction in a larger context which hopefully makes the construction more natural and
hence easier to understand.’ We are trying to make a further step in this direction by show-
ing that Parker’s loop (at least its associator) can be recovered from the intrinsic structure
of N .

It turns out an object similar to Parker’s loop appears under rather general assumptions
within the normalizer of an elementary subgroup of order four in a group with large ex-
traspecial 2-subgroup [12]. Apparently the situation with extraspecial groups of odd order
exhibits similar features [11]. We came across this observation when proving the follow-
ing theorem (where the subgroups C and N of the Monster appear under the names G1

and G2, respectively).

Theorem 1. Let G1 be a group subject to the following:

(i) Q1 := O2(G1) is extraspecial of order 225 and of + type;
(ii) Ḡ1 := G1/Q1 is the first Conway group Co1;
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(iii) there is a surjective homomorphism η :Q1 → Λ̄ with kernel Z1 := Z(Q1) such that
the induced isomorphism between Q1/Z1 and Λ̄ commutes with the action of Ḡ1
(here Λ̄ = Λ/2Λ and Λ is the Leech lattice).

Let t be an element from Q1 with η(t) ∈ Λ̄4. Then for one and only one choice of the
isomorphism type of G1 there exists a group G2 whose center is trivial and which contains
CG1(η(t)) as a subgroup of index 3.

The conditions (i) to (iii) in the above theorem allow exactly two possibilities for the
isomorphism type of G1 (cf. [7, Proposition 2.6] or [8, Lemma 5.13.1]). It is worth men-
tioning that similarly to Conway’s construction when proving Theorem 1 we first construct
a 4-fold cover of G2 and then quotient out a suitable subgroup of order four.

The referee pointed out that Theorem 1 has been well known for 30 years (I have to
take his word for this) and requested a declaration of what is new in the paper. Following
referee’s suggestion I would claim the characterization and the clarification of the structure
of G2 (accomplishing Tits’ request) as new. A rigorous reader, which I am sure the referee
must be, would certainly have found the useful by-products of the proof and the clarity of
the exposition.

2. Golay code

In this section we briefly summarize notation, terminology and basic results concerning
the binary Golay code (cf. [1] and [8] for details).

A Steiner system of type S(5,8,24) is a pair (P,B) where P is a 24-element set and B is
a collection of 8-element subsets of P (called octads) such that every 5-element subset of P
is in a unique octad. This system is unique up to isomorphism and its automorphism group
is the largest Mathieu group M24. Let V (24) be the power set of P turned into a GF(2)-
vector space with addition performed by the symmetric difference operator. Clearly V (24)

carries the structure of the GF(2)-permutation module of M24 acting on P . The GF(2)-
valued function π on V (24) × V (24) defined by

π : (u, v) �→ |u ∩ v| mod 2

is bilinear and M24-invariant.
The M24-module V (24) possesses a unique composition series

0 < V (1) < C12 < V (23) < V (24),

where V (1) is formed by the improper subsets of P ; V (23) is the set of even subsets of P ;
C12 is the 12-dimensional Golay code (which is spanned by the octads). Then C12 and
C̄12 := V (24)/C12 are the 12-dimensional Golay code and Todd modules for M24. The quo-
tient C11 := C12/V (1) of C12 and the submodule C̄11 := V (23)/C12 of C̄12 are irreducible
M24-modules called the 11-dimensional Golay code and Todd modules, respectively.
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The Golay code module C12 is totally singular with respect to π and therefore π induces
a well-defined map C12 × C̄12 → GF(2). Furthermore, V (1) is the radical of π restricted to
V (23) and hence π induces also a well-defined bilinear map C11 × C̄11 → GF(2). For each
of these three maps we use the same symbol π and the concrete meaning will be clear from
the context. From the above discussions it is clear that (C12, C̄12) and (C11, C̄11) are dual
pairs.

The subsets of P contained in C12 are called Golay sets. Besides the empty set and
the whole set P the Golay sets include the octads and their complements as well as the
dodecads (which are 12-element subsets of P). The dodecads come in complementary
pairs. Let S be the subsets of P of size at most 4. Then every element of C̄12 (which is a
coset of C12 in V (24)) intersects S either in a single subset of size less than 4 or in exactly
six subsets of size 4 forming a sextet.

The Parker loop [1,2] is an extension of GF(2) by C12. The power map P , the commu-
tator map C and the associator map A of the Parker loop are defined by

P(u) = 1

4
|u| mod 2,

C(u, v) = 1

2
|u ∩ v| mod 2,

A(u, v,w) = |u ∩ v ∩ w| mod 2

for u,v,w ∈ C12. The symbols P , C and A will also denote the corresponding maps in-
duced on the powers of C11.

The map τ of C12 × C12 onto C̄11 defined by

τ : (u, v) �→ u ∩ v

(here for a subset x of P by x̄ we denote the image of x in C̄12) is bilinear and

A(u,v,w) = π
(
u, τ(v,w)

)
.

The first and the second cohomology groups of the Golay code and Todd modules are
known.

Lemma 2.1. The following assertions hold:

(i) both H 1(C11,M24) and H 2(C11,M24) are trivial;
(ii) both H 1(C̄11,M24) and H 2(C̄11,M24) are of order 2.

Proof. (i) was already known to Thompson [13]. Since C̄12 is an indecomposable extension
of C̄11 by a trivial module, H 1(C̄11,M24) is non-zero. The dimensions of H 1(C11,M24)

and H 1(C̄11,M24) have been calculated in Section 9 of [5]. Finally, H 2(C̄11,M24) was
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calculated by Derek Holt using his cohomology package. For the proof of our main result
we do not need to know H 2(C̄11,M24) but we present it here for completeness.1 �

3. The anti-heart module for M24

The heart V (23)/V (1) of the GF(2)-permutation module of M24 acting on P is an inde-
composable extension of C11 by C̄11. In this section we study an indecomposable extension
of C̄11 by C11 which can be termed the anti-heart module. We show (Lemma 3.2) that
the anti-heart module is in fact the unique such indecomposable extension which carries a
non-zero invariant quadratic form.

Lemma 3.1. For ε ∈ {0,1} let Uε be the set C11 × C̄11 together with addition defined via

(u, v̄) + (t, s̄) = (u + t, v̄ + s̄ + ε · u ∩ t),

where u, t ∈ C11, v̄, s̄ ∈ C̄11 and the operations on the right are in the corresponding mod-
ules. Then

(i) Uε is a GF(2)-vector space and the natural action of M24 turns it into a module for
this group;

(ii) the GF(2)-valued function qε on Uε defined by

qε(u, v̄) = π(u, v̄) + ε · P(u)

is an M24-invariant quadratic form on Uε and the associated bilinear form is

f ε
(
(u, v̄), (t, s̄)

) = π(u, s̄) + π(t, v̄) + ε · C(u, t);
(iii) the action of C11 on Uε defined by

u : (t, s̄) �→ (t, s̄ + u ∩ t)

preserves the vector space structure and the form qε; furthermore, this action is nor-
malized by the action of M24.

Proof. For ε = 0 the module Uε is the direct sum of C11 and C̄11, so the assertions are quite
obvious in this case since π establishes the duality between C11 and C̄11. For the case ε = 1
the result is a truncated and specialized version of [1, Exercise 4.6 and Lemma 23.10] (see
also the paragraph after Lemma 4.1 below). �

Let Sε = {(u,0) | u ∈ C11} and S̄ε = {(0, v̄) | v̄ ∈ C̄11} be subsets of Uε . By Lemma 3.1
S̄ε is a submodule isomorphic to C̄11, which is totally isotropic with respect to qε and cen-
tralized by the action of C11. On the other hand, Sε is M24-invariant, but it is closed under

1 It was pointed out by the referee that both these second cohomology groups were calculated by D.J. Jackson
in his PhD thesis (circa 1980).
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the addition only if ε = 0. Since the stabilizer in M24 of a Golay subset does not stabilize
proper subsets of P other than the subset itself and its complement, it is clear that Sε is
the only M24-invariant subset of Uε which projects bijectively onto C11. In particular U1

(called the anti-heart module) is indeed indecomposable.
The next two lemmas provide us with a characterization of the anti-heart module.

Lemma 3.2. The following assertions hold:

(i) the exterior square C̄11 ∧ C̄11 contains C11 as a submodule;
(ii) the quotient V (44) := (C̄11 ∧ C̄11)/C11 is irreducible;

(iii) H 1(V (44),M24) has order 2.

Proof. The trilinear form A on C11 defines a surjective bilinear map C11 ∧ C11 → C̄11.
Applying the duality we obtain (i). The composition factors of the exterior square can be
calculated by decomposing the Brauer character of C̄11 × C̄11 using [10]. This gives (ii).
Finally (iii) is the result of computer calculations with the cohomology package by Derek
Holt performed by Dima Pasechnik. �
Lemma 3.3. Let U be a 22-dimensional GF(2)-space and q be a non-singular quadratic
form of type + on U . Let H be a subgroup of the orthogonal group O(U,q) ∼= O+

22(2)

such that

(i) H is the semidirect product with respect to the natural action of R ∼= C11 and K ∼=
M24;

(ii) H stabilizes a maximal totally isotropic subspace S;
(iii) R centralizes both S and U/S while K acts on S and U/S as on C̄11 and C11, respec-

tively.

Then U , as a module for K , is isomorphic to Uε for ε = 0 or 1 and R acts on U according
to the rule given in Lemma 3.1(iii). In particular (up to conjugation) there are exactly two
choices for H .

Proof. The stabilizer L of S in O(U,q) is the semidirect product of X and Y , where
X = O2(L) ∼= S ∧ S is the centralizer of S in L and Y ∼= GL(S) is a Levi complement.
By the hypothesis HX/X ∼= M24 and by Lemma 3.2(ii) H ∩ X is the only 11-dimensional
H -submodule in X. Finally K is a complement to X/R ∼= 244 in HX/R ∼= 244 : M24. By
Lemma 3.2(iii) up to conjugation there are two choices K0 and K1 for this complement.
If we assume that K0 is contained in the Levi complement Y then it preserves a direct
sum decomposition of U and therefore acts on U as M24 acts on U0. By the pigeonhole
principle the action of K1 on U must be isomorphic to the action of M24 on U1. �
Lemma 3.4. The only non-zero M24-invariant quadratic form on Uε is qε and the only
non-zero M24-invariant bilinear form is f ε .
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Proof. The uniqueness of the quadratic form follows from Lemma 3.3, while that of the
bilinear form is due to the fact that π establishes the only duality between C11 and C̄11. �

4. Trident groups

In this section we construct a family of groups (called the trident groups) of the shape
211.(211 × 211).M24 which includes the section CN(〈z, t〉)/〈z, t〉 of the normalizer N in
the Monster group M of an elementary subgroup 〈z, t〉 of order 4 (N appears in Theorem 1
under the name G2).

We show (Lemma 4.4 together with the equality |H 2(C̄11,M24)| = 2) that (up to iso-
morphism) there are exactly four trident groups. In order to identify CN(〈z, t〉)/〈z, t〉
among them we calculate the automorphism groups (Subsection 4.1) and estimate the
Schur multipliers (Subsection 4.2) of the trident groups.

Let Fδ be an extension of C̄11 by M24, so that O2(F
δ) is isomorphic to C̄11 as a module

for Fδ/O2(F
δ) ∼= M24 and δ ∈ H 2(C̄11,M24) specifies the type of the extension. In view

of Lemma 2.1(ii) δ is either 0 or 1, so that F 0 is the semidirect product and F 1 is the only
non-split extension.

For α,β ∈ {0,1} and δ ∈ H 2(C̄11,M24) let T = T (α,β, δ) be a group which is a product
of three of its subgroup Aα , Bβ and Fδ such that (1) Aα and Bβ are normal elementary
abelian of order 222 each; (2) E := Aα ∩ Bβ coincides with O2(F

δ); (3) there are isomor-
phisms a :Uα → Aα and b :Uβ → Bβ which commute with the actions of Fδ/E ∼= M24
(so that E = a(S̄α) = b(S̄β)); (4) for u, t ∈ C11, v̄, s̄ ∈ C̄11 we have

[
a(u, v̄), b(t, s̄)

] = e(u ∩ t),

where e is the isomorphism of C̄11 onto E commuting with the actions of Fδ . Notice that
Q := O2(T ) is of order 233; Q = AαBβ , E = Z(Q) and T/Q ∼= Fδ/E ∼= M24.

The group T (α,β, δ) exists and unique up to isomorphism. It can be obtained in two
stages by constructing partial semidirect products (cf. [3, p. 27] for the definition). Start
by taking disjoint copies Aα and Bβ of Uα and Uβ , respectively, with a and b being the
identity maps. Construct the semidirect product X of Aα and Bβ with b(S̄β) centralizing
Aα and Bβ/b(S̄β) ∼= C11 acting as in Lemma 3.1(iii). Take Y to be the quotient of X over
the subgroup {a(0, v̄)b(0, v̄) | v̄ ∈ C̄11} (which is the diagonal copy of C̄11). Identify Aα

and Bβ with their respective images in Y . Construct a semidirect product Z of Y and
Fδ with O2(F

δ) acting trivially and Fδ/O2(F
δ) ∼= M24 acting on Aα and Bβ as on Uα

and Uβ , respectively. Finally, quotient out the diagonal copy of C̄11 (which is the unique
normal subgroup of order 211 in Z which is neither in Y = AαBβ nor in Fδ). In terms
of Lemma 3.3 the semidirect product of U and H is T (0,0,0) or T (1,0,0) depending
on whether or not the M24-subgroup K from H is contained in a Levi complement of
O(U,q).

Lemma 4.1. Let T = T (α,β, δ) be the above defined group. Let

γ = (1 + α + β) mod 2,
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let c be the mapping of Uγ into T defined by

c : (u, v̄) �→ a(u,0)b(u,0)e(v̄),

and let Cγ = Im(c). Then

(i) c is an injective homomorphism;
(ii) Cγ is a normal subgroup in T containing E;

(iii) c commutes with the actions of Fδ/O2(F
δ) ∼= M24;

(iv) for u, t ∈ C11, v̄, s̄ ∈ C̄11 we have

[
c(u, v̄), a(t, s̄)

] = [
c(u, v̄), b(t, s̄)

] = e(u ∩ t);

(v) Aα , Bβ and Cγ are the maximal elementary abelian normal subgroups in T .

Proof. Directly from the definitions of T , c and Cγ we have the following equalities:

c(u, v̄)c(t, s̄) = a(u,0)b(u,0)e(v̄)a(t,0)b(t,0)e(s̄)

= a(u,0)a(t,0)b(u,0)b(t,0)e(u ∩ t)e(v̄ + s̄)

= a(u + t,0)e(u ∩ t)αb(u + t,0)e(u ∩ t)βe(u ∩ t)e(v̄ + s̄)

= c(u + t, v̄ + s̄)e(u ∩ t)1+α+β.

This proves the assertions (i) to (iii). The assertion (iv) is now immediate, since both Aα

and Bβ are abelian. Since Q/E is the direct sum of two copies of C11, (v) follows. �
The groups T are analogous to the so-called tri-extraspecial groups introduced and stud-

ied by S.V. Shpectorov and the present author in [9]. The group T will be said to be a trident
group. A maximal abelian normal subgroup in T will be called a dent (by Lemma 4.1(v)
there are exactly three dents in T which explains the name trident). Any two different
dents intersect in E which is the center of Q = O2(T ). A subgroup K of T is called a
quasi-complement if K ∩ Q = E and KQ = T . In particular Fδ is a quasi-complement.
By Lemma 4.1 when α = β = 0 the value of γ is 1. Hence even the group T (0,0,0), which
is a plain semidirect product, contains a copy of U1. This construction can be used as an
alternative definition of the anti-heart module.

For the proof of our crucial Proposition 6.4 we need the following characterization of
the trident groups.

Lemma 4.2. Let X be a group, satisfying the following:

(i) Q := O2(X) is of order 233 and X/Q ∼= M24;
(ii) Q = AB , where A and B are self-centralizing elementary abelian normal subgroup

in X of order 222 each;
(iii) there are non-zero quadratic forms qA and qB on A and B which are invariant under

the actions of X on these subgroups;
(iv) if E = A ∩ B then E ∼= C̄11 and A/E ∼= B/E ∼= C11 as X/Q-modules.

Then X is a trident group.
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Proof. Since H 2(C11,M24) is trivial, X/E splits over Q/E = A/E × B/E ∼= C11 × C11.
Applying Lemma 3.3 to A and B , and the images of X in O(A,qA) and O(B,qB), re-
spectively, we observe that the properties of X match the defining properties of a trident
group with Fδ being the preimage in X of a complement to Q/E in X/E. �
Lemma 4.3. All the quasi-complements in a trident group T are conjugates of Fδ .

Proof. A quasi-complement is the preimage in T of a complement to Q/E in T/E. By
the definition of T the quotient T/E is the semidirect product of Q/E ∼= C11 × C11 and
Fδ/E ∼= M24. Since H 1(C11,M24) is trivial (cf. Lemma 2.1(i)) the result follows. �

Let D = {Aα,Bβ,Cγ } be the set of dents in T . Define θ : D → GF(2) to be a func-
tion such that D ∈ D is isomorphic to Uθ(D) as a module for K/E ∼= M24, where K is
a quasi-complement. By Lemma 4.3 θ is well defined (independent of the choice of the
quasi-complement). The definition of a trident group involves a pair of dents and a quasi-
complement, and by Lemma 4.1 any pair of dents can be taken. On the other hand, the
function θ is determined by its values on a pair of dents. Thus every trident group is iso-
morphic either to T (0,0, δ) or to T (1,1, δ) for some δ. We rephrase this observation in the
following lemma.

Lemma 4.4. For a given isomorphism type of Fδ there are exactly two possibilities for the
isomorphism type of T :

(i) T = T +(δ) is of plus type: two dents are semi-simple and the third one is indecompos-
able;

(ii) T = T −(δ) is of minus type: each of the three dents is the indecomposable anti-heart
module.

If we consider D as the set of non-zero vectors of a 2-dimensional GF(2)-space then
by Lemma 4.1 θ is a non-singular quadratic form and the type of T in the above lemma is
exactly the type of the form.

4.1. Automorphisms

In this subsection we calculate the automorphism groups of the trident groups.

Lemma 4.5. Let T be a trident group. Let ρ be a permutation of the set of dents D which
preserves the function θ . For D ∈ D and d being the Fδ/E-invariant isomorphism of
Uθ(D) onto D let ρ(d) denote the similar isomorphism of Uθ(ρ(D)) onto ρ(D). Define
a map μ(ρ) which fixes every element of Fδ and sends d(u, v̄) onto ρ(d)(u, v̄) for all
u ∈ C11, v̄ ∈ C̄11. Then μ(ρ) extends uniquely to an (outer) automorphism of T .

Proof. The result is immediate from Lemma 4.1(iv) and the definition of T . Notice that
the automorphism (which extends) μ(ρ) permutes the dents according to ρ. �



580 A.A. Ivanov / Journal of Algebra 300 (2005) 571–589
Define Lδ to be a partial semidirect product of C̄12 and Fδ . As usual to construct this
group we first take the semidirect product of C̄12 and Fδ with O2(F

δ) acting trivially and
Fδ/O2(F

δ) ∼= M24 acting naturally, and then quotient out the diagonal copy of C̄11. Then
Lδ is an extension of C̄12 by M24 and it contains (an isomorphic copy of) Fδ with index 2.

Lemma 4.6. Lδ = Aut(F δ).

Proof. Since Fδ has trivial center it can be identified with Inn(F δ). In view of the exis-
tence of Lδ it is sufficient to show that the index of Fδ in Aut(F δ) is at most 2. Let ψ be
an automorphism of Fδ . Since the action of Fδ/O2(F

δ) ∼= M24 on O2(F
δ) is absolutely

irreducible and the outer automorphism group of M24 is trivial, ψ can be adjusted by inner
automorphisms to centralize O2(F

δ) and to commute with Fδ/O2(F
δ). Then 〈O2(F

δ),ψ〉
is abelian and can be considered as a module for Fδ/O2(F

δ). Since a power of ψ must not
commute with the whole of Fδ unless this power is the identity element, the module must
be an indecomposable extension of C̄11 by a trivial GF(2)-module. By Lemma 2.1(ii) the
largest such extension is C̄12 which gives the result. �
Proposition 4.7. The following assertions hold:

(i) Out(T +(δ)) ∼= 22;
(ii) Out(T −(δ)) ∼= Sym3 × 2.

Proof. It is easy to see that every automorphism of the quasi-complement Fδ which com-
mutes with E = O2(F

δ) extends uniquely to an automorphism of T which commutes
with Q. Then from Lemmas 4.4 and 4.5 we obtain all the required outer automorphisms.
Since all the quasi-complements are conjugate by Lemma 4.3, it only remains to show that
an automorphism of T which centralizes Fδ and stabilizes every dent as a whole must be
trivial. But this is indeed the case since for every dent D the group Fδ/E acts absolutely
irreducibly on each composition factors of D and these (two) composition factors are non-
isomorphic. �

Thus the trident groups of minus type possess the triality symmetry between the dents.
This triality is essential for constructing the group G2 in Theorem 1.

4.2. Schur multipliers

In this subsection we estimate the order of the Schur multiplier of a trident group T .
Since T is perfect, the standard theory of Schur multipliers applies. Let T̃ be the covering
group of T which is the largest perfect group possessing a surjective homomorphism

χ : T̃ → T

such that ker(χ) = Z(T̃ ) (recall that Z(T ) = 1). Then Z(T̃ ) is the Schur multiplier of T .
For a subgroup X of T let X̃ denote the preimage of X in T̃ . Since the Schur multiplier of
M24 ∼= T/O2(T ) is trivial it is easy to see that Z(T̃ ) is a 2-group.
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Lemma 4.8. Let Y = [Q̃, Ẽ]. Then Z(T̃ )/Y is elementary abelian of order 22.

Proof. By the definition Y is the smallest normal subgroup of T̃ contained in Z(T̃ ) such
that Ẽ/Y is the center of Q̃/Y . Therefore Ẽ/Y is a T/Q-module which is an extension
of a trivial module by E. Since E ∼= C̄11 is dual to C11 and H 1(C11,M24) is trivial by
Lemma 2.1(i), there are no proper indecomposable extensions of trivial modules by C̄11.
Hence there is a complement I to Z(T̃ )/Y in Ẽ/T which is normal in T̃ /Y . The quotient
of T̃ /Y over I is a perfect central extension of T/E ∼= (C11 × C11) : M24. Since (1) the
Schur multiplier of M24 is trivial; (2) M24 does not preserve non-zero bilinear forms on
C11, (3) H 1(C̄11,M24) is of order 2 and C̄11 is the dual of C11; we conclude that the Schur
multiplier of T/E has order at most 4. Thus it only remains to show that the upper bound
for the order of Z(T̃ )/Y is attained. For this purpose we apply a standard pull back con-
struction. First, let X be the semidirect product with respect to the natural action of the
direct sum of two copies of C12, and M24. Second, consider the subdirect product X(1)

of X and T with respect to their homomorphisms onto T/E ∼= (C11 × C11) : M24. Then
X(1) is a perfect group with center of order 4 possessing a homomorphism onto T and the
preimage of E with respect to this homomorphism is the center of X(1). Hence the result
follows. �
Lemma 4.9. The order of Y = [Q̃, Ẽ] is at most 22.

Proof. Let D be a dent. Let ζ(D) : D̃ × D̃ → Z(T̃ ) be the commutator map, so that

ζ(D) : (d̃1, d̃2) �→ [d̃1, d̃2].

Since D is an elementary abelian 2-group, so is the image I (D) of ζ(D). Let J be a
hyperplane in I (D). Since Y is in the center of T̃ the mapping D̃ × D̃ → I (D)/J induced
by ζ(D) induces in its turn a bilinear form D × D → GF(2) which is invariant under
the action of Fδ/E ∼= M24. By Lemma 3.4 this implies that I (D) is of order at most 2.
Let D = {Aα,Bβ,Cγ }. Since Q = AαBβ , the group Y is generated by I (Aα) and I (Bβ)

(both of order at most 2). Considering elements a ∈ Aα \ E, b ∈ Bβ \ E, c ∈ Cγ \ E with
abc = 1, it is easy to see that Y is elementary abelian of order at most 22. �
Lemma 4.10. If T is of plus type then the order of Y = [Q̃, Ẽ] is at most 2.

Proof. Let T be a trident group of plus type and assume without loss that α = β = 0,
γ = 1. For D ∈ D let ω(D) : D̃ → Z(T̃ ) be the squaring map. We claim that image of
ω(D) is contained in the commutator I (D) of D̃ and that ω(D) induces on D a quadratic
form associated with the bilinear form induced by the commutator map ζ(D). In order to
prove the claim it is sufficient to show that D̃/I (D) has exponent 2. The group D̃/I (D)

is abelian and hence it is a direct product of cyclic groups. By Lemmas 4.8 and 4.9
|Z(T̃ )/I (D)| � 23, and therefore there are at most three direct factors of orders greater
than 2. Hence the images in D of the involutions from D̃/I (D) generate a submodule in
D of codimension at most 3. Since there are no such proper submodules the claim follows.
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Let u be an element of C11 which is a pair of complementary dodecads. Then by
Lemma 3.1(ii) the elements a(u,0) and b(u,0) are isotropic with respect to the invari-
ant quadratic forms on A0 and B0, respectively. By the first paragraph of the proof this
implies that both a(u,0)2 and b(u,0)2 are equal to the identity element. By Lemma 4.1
c(u,0) = a(u,0)b(u,0) = b(u,0)a(u,0) and therefore c(u,0)2 is the identity as well. On
the other hand, by Lemma 3.1(ii) the element c(u,0) is not isotropic with respect to the
non-zero invariant quadratic form on C1. This means that I (C1) is trivial and hence the
order of Y is at most 2. �

In Section 6 we will see that the upper bound 24 for the Schur multiplier is attained for
a particular trident group of minus type. It is well known that every automorphism of T

can be lifted to an automorphism of T̃ (a proof can be seen on pp. 356–357 of [4]).

Lemma 4.11. Suppose that T is a trident group with Z(T̃ ) of order 24. Then the automor-
phism group of dent permutations acts faithfully on Z(T̃ ) with every permutation of order
3 acting fixed-point freely.

Proof. If Y = [Q̃, Ẽ] has order 4 then by the proof of Lemma 4.9 there is a natural bi-
jection between the dents and the non-identity elements of Y . Similarly by the proof of
Lemma 4.8 there is a natural bijection between the dents and the non-identity elements of
Z(T̃ )/Y . �

It does not appear to be obvious (even when |Z(T̃ )| = 24) whether the automorphism
of T which centralizes Q and induces an outer automorphism of a quasi-complement acts
non-trivially on Z(T̃ ). We do not need to answer this question in order to prove Theorem 1.
The affirmative answer will be given at the very end of the paper (in Lemma 7.1(i)) for the
sake of completeness.

5. Leech lattice

The Leech lattice Λ is commonly defined with respect to a basis identified with the
element set P of the Steiner system S(5,8,24) (cf. [1, Chapter 8] or [8, Chapter 4]). The
coordinates of a Leech vector λ ∈ Λ in this basis are integers and therefore λ can be con-
sidered as a function

λ :P → Z.

The Leech vectors are characterized by the following three conditions:

(i) there is m ∈ {0,1} such that λ(a) ≡ m mod 2;
(ii) {a | λ(a) ≡ m mod 4} is a Golay set;

(iii)
∑

λ(a) ≡ 4m mod 8.
a∈P
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Define

Λi =
{
λ

∣∣∣ λ ∈ Λ,
∑
a∈P

λ(a)2 = 16i

}
.

The group C0 of automorphisms of Λ preserving the origin is a non-split extension by the
first Conway group Co1 of the group of (±1)-scalar transformations. The stabilizer N0 in
C0 of the frame

F = {±a | a ∈ P}

is the semidirect product of O2(N0) ∼= C12 and K ∼= M24. The elements of K permute the
coordinates of the Leech vectors in the natural way and a Golay set u ∈ O2(N0) acts by
sign changes:

u :λ(a) → (−1)|u∩{a}|λ(a).

In particular P (considered as an element of O2(N0)) acts as the (−1)-scalar operator.
Put Λ̄ = Λ/2Λ ∼= 224 and adopt the bar convention for the images in Λ̄ of elements and

subsets of Λ. Then

Λ̄ = Λ̄0 ∪ Λ̄2 ∪ Λ̄3 ∪ Λ̄4

(Λ1 = ∅, since Λ contains no roots). The group Ḡ1 := C0/{±1} ∼= Co1 acts faithfully and
irreducibly on Λ̄ preserving a unique non-zero quadratic form θΛ̄ (which is non-singular)
defined by

θΛ̄ : Λ̄i → i mod 2

for i = 0,2,3,4. If a ∈ P the vector λ0 := 8a is contained in Λ4, λ̄0 is independent of the
choice of a and

Ḡ12 := N0/{±1} ∼= C11 : M24

is the stabilizer of λ̄0 in Ḡ1. Let K also denote a complement to O2(Ḡ12) in Ḡ12 (since
H 1(C11,M24) is trivial, all the complements are conjugate). The following result is well
known (cf. [8, Lemma 4.6.2]).

Lemma 5.1. The Leech lattice Λ̄ as a module for Ḡ12 possesses a unique composition
series

0 < Λ̄(1) < Λ̄(12) < Λ̄(23) < Λ̄,

and
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(i) Λ̄(1) = 〈λ̄0〉 is the centralizer of O2(Ḡ12) in Λ̄;
(ii) Λ̄(12)/Λ̄(1) is the centralizer of O2(Ḡ12) in Λ̄/Λ̄(1) and Λ̄(12) is totally isotropic with

respect to θΛ̄;
(iii) Λ̄(23) is the dual of Λ̄(1) with respect to the bilinear form associated with θΛ̄.

The actions of K and O2(Ḡ12) on Λ̄ are described in [1, Lemma 23.10]. The next two
lemmas are extractions from that description.

Lemma 5.2. Consider Λ̄ as a module for a complement K ∼= M24 to O2(Ḡ12) in Ḡ12.
Then (besides the composition series in Lemma 5.1) there is a composition series:

0 < Λ̄(11) < M̄(12) < M̄(13) < Λ̄

and the following assertions hold:

(i) M̄(12) ∼= C̄12;
(ii) Λ̄/M̄(12) ∼= C12;

(iii) Λ̄(23)/Λ̄(1) is isomorphic to the anti-heart module;
(iv) M̄(12)/Λ̄(11) and M̄(13)/M̄(12) are trivial 1-dimensional.

Notice that the subset of Λ̄(23)/Λ̄(1) on which K acts as on C11 ∪ C̄11 is formed by the
images of the Leech vectors from

{∑
a∈u

2a

∣∣∣u ∈ C12

}
∪

{∑
a∈s

4a

∣∣∣ s ⊆ P, |s| ∈ {0,2,4}
}
.

Thus the anti-heart module can also be defined as the 22-dimensional section of the
Leech lattice modulo 2 (considered as a module for K ∼= M24). Since H 1(C11,M24) is
trivial and H 1(C̄11,M24) has order 2, it is easy to see that the assertions (i) to (iv) in
Lemma 5.2 specify Λ̄ uniquely as an M24-module.

Lemma 5.3. In terms of Lemma 5.1 the group O2(Ḡ12) ∼= C11 acts

(i) on Λ̄(12) by transvections with center λ̄0;
(ii) on Λ̄/Λ̄(12) by transvections with axis Λ̄(23)/Λ̄(12);

(iii) on Λ̄(23)/Λ̄(1) according to the rule given in Lemma 3.1(iii).

Each of the above three actions is faithful.

6. Proof of Theorem 1

Let G1 be a group satisfying the hypothesis of Theorem 1. As was mentioned in the
paragraph following Theorem 1, there are two such groups. To obtain the other one we
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first construct the universal cover Ĝ1 which is the subdirect product of G1 and the auto-
morphism group C0 ∼= 2.Co1 of the Leech lattice with respect to their homomorphisms
onto Ḡ1 ∼= Co1, and then quotient out the diagonal central subgroup of order 2.

Let η :Q1 → Λ̄ be the G1-invariant homomorphism as in the hypothesis of Theo-
rem 1 and adopt the notation for the Leech lattice from Section 5. Let t be an element
from Q1 \ Z1 with η(t) = λ̄0. Put Z2 = 〈z, t〉, G12 = NG1(Z2), G0

12 = CG1(Z2), and
Q2 = O2(G

0
12). Then G12 is the preimage in G1 of the stabilizer Ḡ12 ∼= 211 : M24 of λ̄0 in

Ḡ1 ∼= Co1.

Lemma 6.1. Let E2 and Â be the preimages with respect to η of Λ̄(12) and Λ̄(23), respec-
tively. Then

(i) G0
12 ∩ Q1 = Q2 ∩ Q1 = Â, Q2Q1 = O2(G12), G0

12/Q2 ∼= M24, and G0
12 is the com-

mutator subgroup of G12;
(ii) elements from Q1 \ Â conjugate t to tz;

(iii) E2 is a maximal elementary abelian normal subgroup in Q1 of order 213, E2 is
the centralizer of Q2/Z2 in Q1, and E2/Z2 is isomorphic to C̄11 as a module for
G0

12/Q2 ∼= M24;
(iv) Q2 induces on E2 the group generated by the transvections whose centers are con-

tained in Z2;
(v) [E2,Q2] = Z2.

Proof. The assertions (i) to (iii) follow from Lemma 5.1(iii). Since θΛ̄ is non-singular,
Λ̄(12) is a maximal totally singular subspace in Λ̄. Therefore an element from Q2 \ E2
acts on E2 as a transvection with center t . In view of this observation (iv) follows from
Lemma 5.3(i). Finally (v) is immediate from (iv). �
Lemma 6.2. Let B̂ and Ĉ be the centralizers in Q2 of E2/〈t〉 and E2/〈tz〉, respectively.
Then

(i) B̂ ∩ Q1 = Ĉ ∩ Q1 = E2 and ÂB̂ = ÂĈ = Q2;
(ii) [B̂, B̂] = 〈t〉, [Ĉ, Ĉ] = 〈tz〉;

(iii) Q2/E2, as a module for G0
12/Q2 ∼= M24, is the direct sum of two copies of C11;

(iv) G0
12/E2 splits over Q2/E2.

Proof. The assertion (i) is immediate from Lemma 6.1(iv). Notice that B̂ and Ĉ are the
subgroups in Q2 which act on E2 by transvections with centers t and tz, respectively.
Thus (ii) follows. By (i) Q2/E2 = Â/E2 × B̂/E2. The factors are isomorphic to C11 by
Lemmas 5.2(ii) and 5.3. This gives (iii). Finally (v) is by (iv) and Lemma 2.1(i). �
Lemma 6.3. B̂/〈z〉 ∼= Ĉ/〈z〉 ∼= 21+22+ .

Proof. In view of Lemmas 6.1(iv) and 6.2(ii) (and the obvious symmetry between B̂

and Ĉ) all we have to show is that the abelian group B̂/Z2 has exponent 2. The group
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(as a module for G0
12/Q2 ∼= M24) is an extension of E2/Z2 ∼= C̄11 by O2(Ḡ12) ∼= C11.

Since E2/Z2 must be in the center of B̂/Z2, the squares of the elements from a coset of
E2/Z2 are the same element of E2/Z2. On the other hand, the stabilizer in M24 of an
element from C11 does not stabilize non-trivial elements in C̄11. Thus B̂/Z2 is indeed has
exponent 2. �

If G is a group such that G1 = CG(z) and in which t is a conjugate of z, then

B̂ = O2
(
CG(t)

) ∩ G1, Ĉ = O2
(
CG(tz)

) ∩ G1

and the above three lemmas are rather standard in the theory of groups with large extraspe-
cial 2-subgroup (cf. [1,12]).

Now we are ready to proof our crucial result.

Proposition 6.4. G0
12/Z2 ∼= T −(δ) for some δ ∈ H 2(C̄11,M24).

Proof. For T = G0
12/Z2 we check the hypothesis of Lemma 4.2 with Q = Q2/Z2, A =

Â/Z2, B = B̂/Z2. Then (i) is by Lemma 6.1(i); (ii) is by Lemmas 6.2(i) and 6.3; and (iv)
is by Lemmas 6.1(iii) and 6.2(iii). The quadratic forms needed for (iii) are induced by
the squaring maps in the extraspecial groups Â/〈t〉 and B̂/〈z〉 (compare Lemma 6.3 and
the definition of Â). We claim that G0

12 is of minus type. Indeed, G0
12 is perfect central

extension of T with center Z2 of order 4. Now it only remains to compare Lemma 4.10
with Lemma 6.1(v). �

A quasi-complement Fδ is the preimage in T of an M24-complement to Q2/E2 in
G0

12/E2 (such a complement exists by Lemma 6.2(iv)). Within our treatment it is irrelevant
whether Fδ splits or not. It is known in the theory of the Monster that Fδ does not split (cf.
[13, Property (16)]).

In order to prove Theorem 1 we need to construct a group G2 containing G12 with
index 3. Since G0

12 is the only subgroup of index 2 in G12, it must be normal in G2.
Therefore Z2 = Z(G0

12) is also normal in G2. Since G2 is supposed to have trivial center,
we conclude that G2 acts transitively on Z#

2 = {z, t, tz}. By Lemma 6.1(ii) G12 permutes t

and tz centralizing z. Hence G2/G0
12

∼= Sym3.

Lemma 6.5. G2/Z2 is a subgroup of Aut(T ) satisfying the following:

(i) G2/Z2 contains the group of inner automorphisms;
(ii) the image of G2/Z2 in Out(T ) is Sym3;

(iii) G2/Z2 contains G12/Z2 with index 3;
(iv) the isomorphism type of G2/Z2 is uniquely determined.

Proof. Since Z(T ) = 1 the assertion (i) to (iii) follow from the paragraph before the
lemma. By Lemmas 4.7(ii) and 6.4 Out(T ) contains precisely two subgroups Sym3 which
have different subgroups of order 2. Since the image of G12/Z2 in Out(T ) is such a sub-
group of order 2, (iv) follows. �



A.A. Ivanov / Journal of Algebra 300 (2005) 571–589 587
It is implicit in the proof of Lemma 6.5 that G2/Z2 is independent of the choice of the
isomorphism type of G1. This is indeed the case since Z2 contains Z1 and the two groups
suitable for G1 are isomorphic modulo their centers.

One can apply Lemma 5.2(i) to show that it is not possible to choose an element in
G12 \ G0

12 to centralize a quasi-complement in T . Therefore G2/G0
12 is not the group of

‘pure’ dent permutations as in Lemma 4.5.
Now it remains ‘to bring back’ Z2. By Lemma 6.1(i) we know that G0

12 is a perfect
central extension of T and by the universality principle there is a surjective homomorphism

ϕ : T̃ → G0
12.

By Lemmas 4.8 and 6.1(v) |Z(T̃ )| = 24. Therefore ker(ϕ) is of order 22 and G2 exists if
and only if ker(ϕ) is invariant under the action on Z(T̃ ) of G2/G0

12
∼= Sym3. This is the

point where the choice between the two possibilities for G1 becomes essential.
Let Ĝ1 be the covering group of G1 as in the first paragraph of this section, and let T̂ be

the preimage of G0
12 in Ĝ1. Since the stabilizer N0 in C0 of the frame F is a perfect group,

it is easy to see that T̂ is also perfect and hence there is a surjective homomorphism

ψ : T̃ → T̂ .

The group Z(T̂ ) is elementary abelian of order 23. In view of Lemma 4.11 this shows that
Z(T̃ ) is also elementary abelian. Furthermore, ker(ψ) is of order 2 contained in ker(ϕ).
Let χ be the homomorphism of Ĝ1 onto G1. Then ker(χ) is a subgroup of order 2 in the
center of Ĝ1 which is not the commutator of the preimage of Q1 in Ĝ1. Clearly this kernel
is contained in T̂ . Let

χ(i) : T̂ → G0
12

be the homomorphism induced by χ , so that ϕ is the composition of ϕ and χ(i) (we have
introduced the superscript to make explicit the two choices for G1).

Lemma 6.6. Let r be an element of order 3 from G2/G0
12 and d be a generator of

G12/G0
12. Then r has five orbits on Z(T̃ )#, say S1, . . . , S5. These orbits can be renum-

bered so that

(i) S1 = Y # where Y = [Q̃, Ẽ];
(ii) d has one fixed point in each of S1, S2, S3 and no further fixed points in Z(T̃ )#.

Proof. By Lemma 4.11 t acts on Z(T̃ ) fixed-point freely which gives the five orbits. It
it clear that Y # is one of them. The action of t defines on Z(T̃ ) a structure of a 2-di-
mensional GF(4)-space. Since d inverts t , it acts on Z(T̃ ) as a field automorphism which
gives (ii). �
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Let f1, f2 and f3 be the vectors fixed by d and contained in the orbits S1, S2 and S3,
respectively. Since Y maps onto Z2, we have ker(ϕ) ∩ S1 = ∅. Therefore without loss we
assume that

ker(ψ) = 〈f2〉.
There are the following three subspaces of dimension 2 in Z(T̃ ) which are d-invariant and
contain ker(ψ):

〈f1, f2〉, 〈S2〉, 〈f2, f3〉.
We have seen that the former one cannot be the kernel of ϕ, while the last one is not
t-invariant, which leaves us one and only possibility: ker(ϕ) = 〈S2〉. This completes the
proof of Theorem 1.

7. Conclusion

We conclude the article by the following.

Lemma 7.1. Let G2 be as in Theorem 1 and T = G0
12/Z2. Then

(i) Out(T ) ∼= Sym3 × 2 acts faithfully on Z(T̃ ) ∼= 24;
(ii) Out(G0

12) = Sym3.

Proof. By Lemma 4.11 in order to prove (i) all we have to show is that the automorphism
ν which centralizes Q2/Z2 and induces an outer automorphism of a quasi-complement
does not centralize Z(T̃ ). Suppose it does. Then ν stabilizes ker(ϕ) = 〈S2〉 and hence
it induces an (outer) automorphism of G2. The induced automorphism (which we also
denote by ν) centralizes Z2 and therefore it normalizes Q1. Consider the image of ν in the
automorphism group of Q1. Since ν is not inner, it acts non-trivially on Q1/Z1 ∼= Λ̄ and
commutes with the action of Ḡ12 ∼= 211 : M24. It is easy to deduce from Lemmas 5.1 and
5.2 that the only non-identity element in GL(Λ̄) commuting with the action of Ḡ12 is the
transvection τ with center λ̄0 and axis Λ̄(23). However λ̄0 is isotropic with respect to θΛ̄

and therefore τ does not preserve θΛ̄. Since θΛ̄ is induced by the squaring map in Q1, it
is preserved by every automorphism of Q1. This proves (i). Since every automorphism of
G2 can be lifted to an automorphism of T̃ , (i) implies (ii). �

Lemma 7.1(i) is precisely the assertion (i) in Tits’ [14, Proposition 1], III; the asser-
tion (ii) is the essence of our Theorem 1.
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