On finite minimal non-π-closed groups

V. A. Belonogov
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
belonogov@imm.uran.ru

Let G be a finite group and π a set of primes. A group G having a normal π-Hall subgroup is called π-closed. We consider groups G such that G is not π-closed and all maximal subgroups of G are π-closed, i.e. G is a minimal non-π-closed group.

Theorem 1 [1, Theorem 1']. If G is a minimal non-π-closed group then either $G/\Phi(G)$ is a simple non-abelian group or G is a Schmidt group.

Thus, the study of the minimal non-π-closed groups reduces practically to the case of the simple non-abelian groups. Further we use the following notation. As usual $\pi(n)$ is the set of all primes dividing a natural n. If q is a prime power then $S(q) := \{ q_0 \in \mathbb{N} \mid q = q_0^r \text{ for some } r \}$. If $P(x)$ is a integral polynomial on x then $\pi_P(P(q)) := \pi(P(q)) \setminus \bigcup_{q_0 \in S(q)} \pi(P(q_0))$.

Theorem 2 [2,3]. Let G be a finite simple non-abelian group different from $PSL_r(q)$ and $PSU_r(q)$ with an odd prime r and $E(q)$ (everywhere q is a prime power), and $\pi \subseteq \pi(G)$. The following conditions are equivalent:

(A) G is a minimal non-π-closed group;

(B) $2 \not\in \pi$, $\pi \neq \emptyset$ and one of the following conditions holds:

1. $G \cong A_r$ where $r \geq 5$ is a prime different from 11, 23 and $(q^n - 1)/(q - 1)$ where q is a prime powers and $n \in \mathbb{N}$, and $\pi = \{ r \}$;

2. $G \cong PSL_2(q)$, $q > 5$, $\pi(q) = \{ p \}$, and one of the following conditions holds:

 (2a) $q = p$ and either $\pi \subseteq \pi(p + 1) \setminus \{ 3, 5 \}$ or $p \in \pi \subseteq \pi(p(p^2 - 1)) \setminus \{ 3, 5 \}$;

 (2b) $q = p^n > p$, $\pi \subseteq \pi_0(q + 1) \setminus \{ 5 \}$, and $3 \not\in \pi$ if $p > 2$;

3. $G \cong Sz(q)$ ($q = 2^{2n+1} \geq 8$, $\pi \subseteq \pi_0(q^2 + 1)$ for non-prime $2n + 1$ and $\pi \subseteq \pi(q^2 + 1)$ for prime $2n + 1$;

4. $G \cong 2G_2(q)$ ($q = 3^{2n+1} \geq 27$, $\pi \subseteq \pi_0(q^2 - q + 1)$ for non-prime $2n + 1$ and $\pi \subseteq \pi(q^2 - q + 1)$ for prime $2n + 1$;

5. $G \cong 3D_4(q)$ and $\pi \subseteq \pi_0(q^2 - q^2 + 1)$;

6. $G \cong 2G_2(q)$ ($q = 2^{2n+1} \geq 8$) and $\pi \subseteq \pi_0(q^4 - q^2 - q^2 + 1)$;

7. G is one of the sporadic groups $M_{23}, J_1, J_4, L_9, F_{24}'$, F_2 and π is as in [2, Theorem 2].

Thus, for the complete description of the all pairs (G, π) where G is a simple minimal non-π-closed group it remains to consider only three series of groups G: $PSL_r(q)$ and $PSU_r(q)$ with an odd prime r and $E(q)$.

The work is supported by the Complex Program of UB RAS (project 15-16-1-5).

References

[1] V. A. Belonogov, On finite groups whose all maximal subgroups are π-closed, Works of Int. Scool-Conf. on group theory, ded. to 70 of V. V. Kabanov, Nalchik, 2014, 6–9. (In Russian)
