Graphs and Groups, Spectra and Symmetries

Novosibirsk, Russia, August, 15 – 28, 2016

Abstracts

Novosibirsk – 2016
Contents

General Information ... 4
Conference Program ... 5
Abstracts ... 12
 Minicourses ... 13
 Plenary Talks ... 18
 Contributed Talks ... 42
List of Participants .. 116
Author Index ... 126
Timetable ... 128
General Information

The International Conference and PhD-Master Summer School on "Graphs and Groups, Spectra and Symmetries" (G2S2) was held on August 15 - 28, 2016, in Novosibirsk, Akademgorodok, Russia. The main goal of this event was to bring together young researchers and famous mathematicians in the field of graph theory and group theory, especially those involving group actions on combinatorial objects.

G2S2 was organized by Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, Russia.

Program committee:
Alexander Gavriluk, Elena Konstantinova (co-chair), Denis Krotov, Alexander Makhnev, Natalia Maslova, Alexander Mednykh (chair), Andrey Vasil'ev.

Organizing committee:
René van Bevern, Sergey Goryainov, Elaterina Khomjakova, Elena Konstantinova (chair), Denis Krotov, Alexey Medvedev, Kristina Rogalskaya, Anna Simonova, Ev Sotnikova, Ivan Takhonov, Alexandr Valyuzhenich.

Steering committee:
Sergey Goryainov, Elena Konstantinova, Klavdija Kutanar, Alexander Makhnev, Natalia Maslova, Alexander Mednykh.

Partners:
Krasovskii Institute of Mathematics and Mechanics of Ural Branch of Russian Academy of Sciences Limited liability company "Scientific service" (Ltd. Co. "Scientific service")

Sponsors:
Russian Foundation for Basic Research, Project 16-31-10290
Novosibirsk State University, Project 5-100, Unit “Informational and humanitarian technologies of knowledge presentation in educational systems”

Website:
math.nsc.ru/conference/g2/g2s2
Conference Program

All scientific activities were held in the Novosibirsk State University, Pirogova 1, Conference room 3307

Monday, August 15

09:00 - 18:00 Registration: Hall of the Conference room 3307
19:00 - 21:00 Welcome party: Hall of the Conference room 3307

Tuesday, August 16

07:30 - 09:45 Breakfast

PhD-Master Summer School: Minicourse 1
10:00 - 10:50 Lih Hsing Hsu: Lecture 1
11:00 - 11:50 Lih Hsing Hsu: Lecture 2
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 2
12:10 - 13:00 Edward Dobson: Lecture 1
13:00 - 14:30 Lunch
14:30 - 15:20 Edward Dobson: Lecture 2
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Sergey Goryainov: New construction of Deza graphs
16:30 - 16:55 Leonid Shalaginov: On Deza graphs with disconnected second neighbourhoods of vertices
17:00 - 17:25 Vladislav Kabanov: On Deza graphs with parameters $(v, k, k-1, a)$
17:30 - 17:50 Anastasiya Mitryanina: On claw-free strictly Deza graphs
17:50 - 18:10 Coffee break
18:10 - 18:30 Ludmilla Tsiovkina: Arc-transitive antipodal distance-regular covers of complete graphs: almost simple case
18:35 - 19:00 Stefan Gyürki: A construction of infinite families of directed strongly regular graphs
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 1
Wednesday, August 17

07:30 - 09:45 Breakfast

PhD-Master Summer School: Minicourse 1
10:00 - 10:50 Lih Hsing Hsu: Lecture 3
11:00 - 11:50 Lih Hsing Hsu: Lecture 4
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 2
12:10 - 13:00 Edward Dobson: Lecture 3
13:00 - 14:30 Lunch
14:30 - 15:20 Edward Dobson: Lecture 4
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Anatoly Kondrat’ev: Finite groups whose prime graphs do not contain triangles
16:30 - 16:55 Natalia Maslova: On realizability of some graphs as Gruenberg-Kegel graphs of finite groups
17:00 - 17:25 Maria Zvezdina: On the spectra of automorphic extensions of finite simple exceptional groups of Lie type
17:30 - 17:50 Viktor Zenkov: A criterion of unbalance of some simple groups of Lie type
17:50 - 18:10 Coffee break
18:10 - 18:30 Anton Baykalov: Intersection of conjugate solvable subgroups in classical groups of Lie type
18:35 - 19:00 Modjtaba Ghorbani: On the spectra of non-commuting graphs
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 2

Thursday, August 18

07:30 - 09:45 Breakfast

Conference: Invited Talks
10:00 - 10:50 Dragan Marušić: On even-closedness of vertex-transitive graphs
11:00 - 11:50 Klavdija Kutnar: On colour-preserving automorphisms of Cayley graphs
11:50 - 12:10 Coffee break
12:10 - 13:00 Mikhail Muzychuk: Isomorphism problem for Cayley combinatorial objects
13:00 - 14:30 Lunch

Conference: Invited Talks
14:30 - 15:20 Yaokun Wu: The bit-only σ-game and some mathematics around
15:20 - 16:00 Coffee break
16:00 - 16:50 Tatsuro Ito: Towards the classification of $(P$ and Q)-polynomial association schemes
17:00 - 17:50 Jack Koolen: Applications of Hoffman graphs
17:50 - 18:10 Coffee break
18:10 - 19:00 Alexander Gavrilyuk: On characterization of the Grassmann graphs $J_2(2d + 2,d)$
19:00 - 20:00 Dinner
20:00 - 22:00 Basketball/Volleyball, NSU Sports Complex
Friday, August 19

07:30 - 09:45 Breakfast

PhD-Master Summer School: Minicourse 1
10:00 - 10:50 Lih Hsing Hsu: Lecture 5
11:00 - 11:50 Lih Hsing Hsu: Lecture 6
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 2
12:10 - 13:00 Edward Dobson: Lecture 5
13:00 - 14:30 Lunch
14:30 - 15:20 Edward Dobson: Lecture 6
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Farzaneh Gholaminezhad: *Structure and Automorphism group of Involution G-Graphs and Cayley Graphs*
16:30 - 16:55 Mina RajabParsa: *On normal edge-transitive Cayley graphs*
17:00 - 17:25 Swamy Narayan: *Some Class of golden graphs and its construction*
17:30 - 17:50 Anna Simonova: *Small cycles in the Bubble-Sort graph*
17:50 - 18:10 Coffee break
18:10 - 18:30 Hamid Reza Golmohammadi: *Improving some bounds for multiple domination parameters in graphs*
18:35 - 19:00 Nikolai Minigulov: *On 3-generated lattices with standard and dual standard elements among generators*
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 1

Saturday, August 20

07:30 - 09:45 Breakfast

PhD-Master Summer School: Minicourse 1
10:00 - 10:50 Lih Hsing Hsu: Lecture 7
11:00 - 11:50 Lih Hsing Hsu: Lecture 8
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 2
12:10 - 13:00 Edward Dobson: Lecture 7
13:00 - 14:30 Lunch
14:30 - 15:20 Edward Dobson: Lecture 8
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Sho Kubota: *Strongly regular graphs with the same parameters as the symplectic graph*
16:30 - 16:55 Ivan Mogilnykh: *Propelinear codes from multiplicative group of GF(2m)*
17:00 - 17:25 Anastasiya Gorodilova: *The linear spectrum of a quadratic APN function and related open problems*
17:30 - 17:50 Vladimir Potapov: *On the number of n-ary quasigroups, Latin hypercubes and MDS codes*
17:50 - 18:10 Coffee break
18:10 - 18:30 Anastasia Vasil'eva: *On Fourier decomposition of Preparata-like codes in the graph of the hypercube*
18:35 - 19:00 Anna Taranenko: *On transversals in completely reducible quasigroups and in quasigroups of order 4*
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 2
Sunday, August 21

07:30 - 09:45 Breakfast

Conference: Invited Talks
10:00 - 10:50 Akihiro Munemasa: Triply even codes obtained from some graphs and finite geometries
11:00 - 11:50 Patric Östergård: Is there a \((4,27,2)\) partial geometry?
11:50 - 12:10 Coffee break
12:10 - 13:00 Lev Kazarin: Group factorizations, graphs and characters of groups
13:00 - 14:30 Lunch

Conference: Invited Talks
14:30 - 15:20 Andrey Vasil’ev: Cartan coherent configurations
15:20 - 16:00 Coffee break

Conference: Special session
16:00 - 17:00 Ilia Ponomarenko: Graph isomorphism in quasipolynomial time (L. Babai, 2015)
17:00 - 19:00 Discussions
19:00 - 22:00 Conference dinner

Monday, August 22

Excursions/ Sport Activities
Tuesday, August 23

07:30 - 09:45 Breakfast

PhD-Master Summer School: Minicourse 3
10:00 - 10:50 Alexander A. Ivanov: Lecture 1
11:00 - 11:50 Alexander A. Ivanov: Lecture 2
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 4
12:10 - 13:00 Bojan Mohar: Lecture 1
13:00 - 14:30 Lunch
14:30 - 15:20 Bojan Mohar: Lecture 2
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Madeleine Whybrow: Majorana Representations of Triangle-Point Groups
16:30 - 16:55 Dmytry Churilov: Automorphism groups of cyclotomic schemes over finite near-fields
17:00 - 17:25 Olga Kravtsova: The structure of Hentzel–Rúa semifield of order 64
17:30 - 17:50 Ilya Matkin: New infinite family of Cameron-Liebler line classes
17:50 - 18:10 Coffee break
18:10 - 18:30 Ruslan Skuratovskii: Minimal generating systems and structure of Sylow 2-subgroups of alternating groups Syl_2A_{2k} and Syl_2A_n
18:35 - 19:00 Alexey Shlepkin: About group density function
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 3

Wednesday, August 24

07:30 - 09:45 Breakfast

PhD-Master Summer School: Minicourse 3
10:00 - 10:50 Alexander A. Ivanov: Lecture 3
11:00 - 11:50 Alexander A. Ivanov: Lecture 4
11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 4
12:10 - 13:00 Bojan Mohar: Lecture 3
13:00 - 14:30 Lunch
14:30 - 15:20 Bojan Mohar: Lecture 4
15:20 - 16:00 Coffee break

Conference: Contributed talks
16:00 - 16:25 Shuchita Goyal: Hom complex of Mapping cylinders of graphs
16:30 - 16:55 Mukesh Kumar Nagar: A q and q,1-analogue of Hook Immanantal Inequalities and Hadamard Inequality for Trees
17:00 - 17:25 Maryam Jalali-Rad: Erdős-Ko-Rado Properties of some Finite Groups
17:30 - 17:50 Roman Panenko: Φ-Harmonic Functions on Graphs
17:50 - 18:10 Coffee break
18:10 - 18:30 Keiji Ito: Maximum skew energy of tournaments
18:35 - 19:00 Michele Mulazzani: 4-colored graphs and complements of knots and links
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 4
Thursday, August 25

07:30 - 09:45 Breakfast
Conference: Invited Talks
10:00 - 10:50 Anton Betten: Graphs with Integral Spectrum
11:00 - 11:50 Yurii Tarannikov: On plateaued Boolean functions with the same spectrum support
11:50 - 12:10 Coffee break
12:10 - 13:00 Jin Ho Kwak: Notes on zeta functions of regular graphs
13:00 - 14:30 Lunch
Conference: Invited Talks
14:30 - 15:20 ShaoFei Du: 2-Arc-Transitive Regular Covers
15:20 - 16:00 Coffee break
16:00 - 16:50 Ilia Ponomarenko: On characterizations of association schemes by intersection numbers
17:00 - 17:50 Matan Ziv-Av: A family of regular coherent non-Schurian graphs, related to extremal graph theory
17:50 - 18:10 Coffee break
18:10 - 20:00 Conference: Open problems session
20:00 - 22:00 Basketball/Volleyball, NSU Sports Complex

Friday, August 26

08:30 - 09:45 Breakfast
PhD-Master Summer School: Minicourse 3
10:00 - 10:50 Alexander A. Ivanov: Lecture 5
11:00 - 11:50 Alexander A. Ivanov: Lecture 6
11:50 - 12:10 Coffee break
PhD-Master Summer School: Minicourse 4
12:10 - 13:00 Bojan Mohar: Lecture 5
13:00 - 14:30 Lunch
14:30 - 15:20 Bojan Mohar: Lecture 6
15:20 - 16:00 Coffee break
Conference: Contributed talks
16:00 - 16:25 Grigory Ryabov: On the isomorphism problem for Cayley graphs over abelian p-groups
16:30 - 16:55 Sven Reichard: Schur rings over elementary abelian two-groups
17:00 - 17:25 Alexandr Valyuzhenich: Minimal supports of eigenfunctions of Hamming graphs
17:30 - 17:50 Ilya Mednykh: Circulant graphs and Jacobians
17:50 - 18:10 Coffee break
18:10 - 18:30 Dar’ia Andryukhina: Spectra in ensembles of regular graphs
18:35 - 19:00 Konstantin Kobylkin: Computational complexity of Vertex Cover and related problems for highly connected graphs
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving: Minicourse 3
Saturday, August 27

08:30 - 09:45 Breakfast

PhD-Master Summer School: Minicourse 3

10:00 - 10:50 Alexander A. Ivanov: Lecture 7

11:00 - 11:50 Alexander A. Ivanov: Lecture 8

11:50 - 12:10 Coffee break

PhD-Master Summer School: Minicourse 4

12:10 - 13:00 Bojan Mohar: Lecture 7

13:00 - 14:30 Lunch

14:30 - 15:20 Bojan Mohar: Lecture 8

15:20 - 16:00 Coffee break

Conference: Contributed talks

16:00 - 16:25 Yuhei Inoue: *The four color theorem and Thompson’s F*

16:30 - 16:55 Aleksey Glebov: *Splitting planar graphs of bounded girth to subgraphs with short paths*

17:00 - 17:25 Igor Byklov: *Completeness of hamiltonian cycle in halved cube*

17:30 - 17:50 Fadokemi Janet Osaye: *On the average eccentricities of some forbidden subgraphs*

17:50 - 18:10 Coffee break

18:10 - 18:30 Somayeh Heydari: *Some simple groups which are determined by their character degree graphs*

18:35 - 19:00 Irina Starikova: *Mathematical Beauty*

19:00 - 20:00 Dinner

20:00 - 22:00 **Problem solving: Minicourse 4**

Sunday, August 28

08:30 - 09:45 Breakfast

Conference: Invited Talks

10:00 - 10:50 Mitsugu Hirasaka: *Congruence of triangles in a metric space*

11:00 - 11:50 Ji-Young Ham: *On the volume and the Chern-Simons invariant for the 2-bridge link orbifolds*

11:50 - 12:10 Coffee break

12:10 - 13:00 Roman Nedela: *Hamilton Cycles in Graphs Embedded into Surfaces*

Closing
Abstracts

Abstracts of Minicourses, Plenary and Contributed talks are listed alphabetically with respect to the Presenting Author
Minicourses
Minicourse I: Another viewpoint of Euler graphs and Hamiltonian graphs

Lecturer:
Lih-Hsing Hsu
Distiguished Professor, Providence University, Taichung, Taiwan
lihhsing@gmail.com

It may appear that there is little left to do in regards to the study of the Hamiltonian property of vertex transitive graphs unless there is a major breakthrough on the famous Lovasz conjecture. However, if we extend the concept of the traditional Hamiltonian property to other Hamiltonicity properties, then there is still much left to explore. In this series of lectures, I will introduce some of these Hamiltonicity properties, namely fault tolerant Hamiltonian, spanning connectivity, and mutually independent Hamiltonicity.

The course contains eight lectures.
Minicourse II: The Cayley Isomorphism Problem

Lecturer:
Edward Dobson
Mississippi State University, USA
University of Primorska, Koper, Slovenia
dobson@math.msstate.edu

In 1967 Ádám conjectured that two circulant graphs \(\text{Cay}(\mathbb{Z}_n, S) \) and \(\text{Cay}(\mathbb{Z}_n, T) \) are isomorphic if and only if there exists \(m \in \mathbb{Z}_n^* \) such that \(mS = T \). While this conjecture is not true (although from two different points of view it is mostly true), the conjecture was quickly generalized to ask for which groups \(G \) any two Cayley graphs \(\text{Cay}(G, S) \) and \(\text{Cay}(G, T) \) are isomorphic if and only if they are isomorphic by an automorphism of \(G \) (or \(\alpha(S) = T \) for some automorphism \(\alpha \in \text{Aut}(G) \)). Such a group \(G \) is a CI-group with respect to graphs. It is easy to show that \(\alpha(\text{Cay}(G, T)) \) is a Cayley graph of \(G \) for every subset \(T \) of \(G \) and \(\alpha \in \text{Aut}(G) \), so in testing isomorphism between two Cayley graphs of a group \(G \) one must always check to see if the automorphisms of \(G \) are isomorphisms. From this point of view, asking whether or not a group is a CI-group with respect to graphs is the same as asking if the minimal or necessary list of permutations that must be checked as possible isomorphisms is also a sufficient list of permutations to check. We will develop some of the main tools that are used to determine if a group is a CI-group with respect to graphs, along with appropriate permutation group theory. The groups \(G \) we will focus on will mainly be of small order (where small order means that there are not many prime factors). These groups are rich enough to illustrate some, but not all, of the proof techniques that have been developed to show a group is a CI-group with respect to graphs as well as to highlight some of the obstacles for a group to be a CI-group with respect to graphs. We will also discuss how the techniques developed to attack the Cayley isomorphism problem can be modified to attack the isomorphism problem from graphs that are highly symmetric but not Cayley graphs nor even vertex-transitive, as well as to attack similar isomorphism problems for other classes of combinatorial objects.

The course contains eight lectures.
Minicourse III: Graphs and their eigenvalues

Lecturer:
Bojan Mohar
Simon Fraser University, Canada
mohar@sfu.ca

The course contains eight lectures:

3. Laplacian and expansion (Laplacian matrix, expansion lemma, expanders and Ramanujan graphs)
4-5. Random graphs (random graphs and random matrices, Wigner’s semicircle theorem, extensions, quasirandom graphs).
6-7. Applications (Hückel theory, HOMO-LUMO separation, perfect graphs, more on expanders, regularity lemma and graph limits).
8. Hermitian adjacency matrix of a digraph.
Minicourse IV: Y-groups via Majorana Theory

Lecturer:
Alexander A. Ivanov
Department of Mathematics, Imperial College, South Kensington, London, UK
a.ivanov@imperial.ac.uk

Motivated by an earlier observation by B. Fischer, around 1980 J.H. Conway conjectured that a specific Coxeter diagram Y_{443} together with a single additional (so-called “spider”) relation form a presentation for the direct product of the largest sporadic simple group known as the Monster and a group of order 2. This conjecture was proved by S.P. Norton and the lecturer in 1990. It appears promising to revisit this subject through currently developing axiomatic approach to the Monster and its non-associative 196884-dimensional algebra, which goes under the name “Majorana Theory”.

The course contains eight lectures.
Plenary Talks
Graphs with Integral Spectrum

Anton Betten
Colomdo State University, USA
betten@math.colostate.edu

The spectrum of a graph is the set of eigenvalues of the adjacency matrix of the graph, together with their multiplicities. In 1974, Harary and Schwenk initiate the study of graphs with integral spectra, that is, graphs whose eigenvalues are all integral.

In this talk, we will look at integral Cayley graphs and highlight some open problems [1]. One question is whether the Cayley graph obtained from the symmetric group with respect to the generators of the form $(1, i)$, $i = 2, \ldots, n$, is integral. This graph is known as the star graph. A connection to the representation theory of the symmetric group is explored [2].

References

2-Arc-Transitive Regular Covers

Shaofei Du
School of Mathematical Sciences, Capital Normal University, Beijing, China
dushf@mail.cnu.edu.cn

A cover X of a given graph Y is an homomorphism ϕ from X to Y, locally it is a bijection. This is one of fundamental and important concepts in topological graph theory. Another motivation for us to study covers might be from classifications of finite arc-transitive graphs, mainly 2-arc-transitive graphs. In this talk, I shall collect some our recent results on 2-arc-transitive regular covers. In particular, by exhibiting some examples I try to show you the relationships between construction of covers and group extension theory, group representation theory and topological graph theory.
On characterization of the Grassmann graphs $J_2(2d+2,d)$

Alexander Gaivrilyuk

University of Science and Technology of China, Hefei, China
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

sasha@ustc.edu.cn

This is joint work with Jack Koolen

The Grassmann graph $J_q(n,d)$, $n \geq 2d$, is a graph (of diameter d) defined on the set of d-dimensional subspaces of an n-dimensional vector space over the finite field F_q, with two subspaces being adjacent if their intersection has dimension $d - 1$.

In 1995, Metsch [1] showed that a distance-regular graph with the same intersection array as $J_q(n,d)$ is indeed $J_q(n,d)$ unless $n = 2d$, $n = 2d+1$, $(n = 2d+2$ if $q \in \{2,3\})$, or $(n = 2d+3$ if $q = 2$).

In 2005, Van Dam and Koolen [2] constructed the twisted Grassmann graphs, a family of distance-regular graphs with the same intersection array as $J_q(2d+1,d)$, but not isomorphic to them, for all prime powers q and $d \geq 2$.

In 2015, the authors showed that the Grassmann graph $J_2(2d,d)$ can be characterized by its intersection array, if the diameter d is an odd number or large enough.

In this talk, we will discuss a characterization of the Grassmann graphs $J_2(2d+2,d)$.

References

On the volume and the Chern-Simons invariant for the 2-bridge link orbifolds

Ji-Young Ham

Department of Science, Hongik University, Seoul, Korea
Department of Mathematical Sciences, Seoul National University, Seoul, Korea
jiyoungham1@gmail.com

This is joint work with Joongul Lee, Alexander Mednykh and Aleksey Rasskazov

We extend some part of the unpublished paper [1] written by Mednykh and Rasskazov. Using the approach indicated in this paper we derive the Riley–Mednykh polynomial for some family of the two bridge link orbifolds. As a result we obtain explicit formulae for the volume of cone-manifolds and the Chern–Simons invariant of orbifolds of the knot with Conway’s notation $C(2n, 4)$.

References

Characterization of finite metric spaces by their isometric sequences

Mitsugu Hirasaka
Pusan National University, South Korea
hirasaka@pusan.ac.kr

This is a joint work with Masashi Shinohara

Let (X, d) be a metric space where $d : X \times X \to \mathbb{R}_{\geq 0}$ is a metric function. For $A, B \subseteq X$ we say that A is isometric to B if there exists a bijection $f : A \to B$ such that $d(x, y) = d(f(x), f(y))$ for all $x, y \in A$. We shall write $A \simeq B$ if A is isometric to B. For a positive integer k we denote by $A_k(X)$ the quotient set of $\left(\binom{X}{k}\right)$ by \simeq, i.e.

$$A_k(X) = \left\{ [A] \mid A \in \left(\binom{X}{k}\right) \right\},$$

where $[A]$ is the isometry class containing A. For a finite metric space (X, d) we call $([A_i(X)] : i = 1, 2, \ldots, |X|)$ the isometric sequence of X. In this talk we aim to characterize metric spaces X by their isometric sequences, and classify them with the property $|A_2(X)| = |A_3(X)| \leq 3$.
Towards the classification of \((P \text{ and } Q)\)-polynomial association schemes

Tatsuro Ito
School of Mathematical Sciences, Anhui University, Hefei, China
tito@staff.kanazawa-u.ac.jp

This is a survey talk on the subject of the title above. In his lectures at Ohio State University in the late 70s, Eiichi Bannai proposed the classification of \((P \text{ and } Q)\)-polynomial association schemes; he regarded them as finite, combinatorial analogue of compact symmetric spaces of rank 1. I will trace the history back to the late 60s and explain how the concepts of \(P/Q\)-polynomial association schemes arose in relation to finite permutation groups, coding/design theory. I will then overview the progress of the classification in the 80s, 90s and thereafter. Finally I will present my personal view about the scope for the classification problem.

This talk is based on my lecture at the GAP seminar of USTC which is aimed at helping graduate students bridge the gap between established mathematics and the frontiers of mathematical research.
Group factorizations, graphs and characters of groups

Lev Kazarin
Yaroslavl P. Demidov State University, Department of Mathematics, Yaroslavl, Russia
lks46@mail.ru

1. Group factorizations. Let G be a group and A, B be its subgroups. The group G has a factorization $G = AB$ if every element $g \in G$ can be expressed in the form $g = ab$ with $a \in A, b \in B$. By famous Burnside’s p^a-lemma (1903) the group G, having the conjugacy class x^G of a prime-power size $p^a > 1$ is non-simple. Clearly, in this case G has a factorization of the form: $G = C_G(x)P$, where P is a Sylow p-subgroup. As an immediate consequence, every group of order p^aq^b for prime numbers p, q and natural numbers a, b is soluble. Further investigations due to H. Wielandt, O. Kegel, B. Huppert, N. Ito and others leads to many classical result in this area. For instance, finite group $G = AB$ with nilpotent subgroups A and B is soluble. The last result in this area, not using FSGC, is a theorem of L. Kazarin (1979), solving Shimemtloev - Scott conjecture: the group $G = AB$ factorized by subgroups A and B such that A and B have nilpotent subgroups A_0 and B_0 of index at most 2 in the corresponding group, is soluble.

Later (in 1990) M. Liebeck, S. Praeger and J. Saxle have classified maximal factorizations of all finite simple groups, using FSGC. However, many simple problems, concerning factorizations, remains open. A short survey of the results in this area could be find in [1]. Some new results were obtained in this century.

Recall that the group X is called π-decomposable, if G is a direct product of its Hall π-subgroup $O_\pi(X)$ and a subgroup $O_{\pi'}(X)$ of coprime order. The following (containing classical results due H. Wielandt and O. Kegel) was proved by L. Kazarin, A. Martinez-Pastor and M. D. Perez-Ramos [2] in 2015.

Theorem 1. Let π be a set of odd primes. If a finite group $G = AB$ is a product of two π-decomposable subgroups A and B, then $O_{\pi'}(A)O_{\pi'}(B)$ is a subgroup of G.

As a corollary, we prove that the product $G = AB = AC = BC$ of permutable finite π-decomposable subgroups A, B and C is π-decomposable.

A generalization of some results due to Z. Arad, E. Fisman and E. M. Palchik is also presented in the talk.

Note that there is a natural “geometric” situation, when the factorizations are raised. If G is a transitive permutation group acting on a set Ω and a subgroup $H \leq G$ also acts transitively on Ω, then G has a factorization $G = HK$, where K is a stabilizer of a point $\alpha \in \Omega$.

There is another type of factorizations. They are, so-called, ABA-factorizations. More precisely, let A and B be a subgroups of G. We say that G is an ABA-group, if for every element $g \in G$ there exist $a, a' \in A$ and $b \in B$ such that $g = aba'$. There are many interesting classes of groups possessing non-trivial ABA-factorizations. Among them all finite simple groups of Lie type and alternating groups of permutation of degree $n \geq 5$. It is unknown whether every sporadic simple group possesses non-trivial ABA-factorization. There are some interesting results about such factorizations since first papers of D. Gorenstein and I. M. Herstein. But in general the situation is very complicated. One recent result [3] belongs to B. Amberg and L. Kazarin:

Theorem 2. Let a finite group $G = ABA$ cyclic subgroup B. If A is abelian or A is nilpotent of odd order and $GCD(|A|, |B|) = 1$, then G is soluble.

Note that the structure of a nonsoluble ABA-group with abelian subgroups A and B is still unknown.

Of course, every 2-transitive permutation group is an ABA-group for every subgroup B, not contained in A. It seems that such factorizations exists more often if G is a rank 3 permutation group. In each case the authors [3] have find some new approach to this problem based on the properties of involutions.

2. Some arithmetic properties of the characters of groups. It is well-known that the main tool for the proofs of theorems concerning groups with factorizations was character theory. This is clear
for Burnside's p^a-lemma. In general, a finite group has a factorization $G = AB$ iff $(G_A, G_B) = 1$. Similar criterions exist also for 2-transitive groups and rank 3 permutation groups.

E. P. Wigner has proved (in 1941) very interesting result, concerning finite groups with the following property. Let G be a real finite group all whose all irreducible representations are $T_1, T_2, \ldots T_k$. If for any $i, j \leq k$ the decomposition $T_i \otimes T_j = \sum c_{ij} T_s$ has all coefficients $c_{ij} \leq 1$, then the following holds:

$$\sum_{g \in G} |C_g(g)|^2 = \sum_{g \in G} \zeta(g)^3.$$

Here $\zeta(g)$ is the number of solutions in G of the equation $x^2 = g$. E. Wigner called groups with this property SR-groups. The solubility of finite SR-groups was proved by L. Kazarin with his students in 2010. One of the results of similar nature obtained in 2011 with A. Ambger, is as follows:

Theorem 3. Let G be a finite simple group and τ be an arbitrary involution of G. If $|G| > 2|C_G(\tau)|$, then G has a proper subgroup of order at least $|G|^{1/2}$. If $|G| > |C_G(\tau)|^3$, then $|G| < k(G)^3$, where $k(G)$ is a class number of G.

The behavior of the degrees of irreducible characters is of special interest for many authors. One of the famous computational problems in computational mathematics is the complexity of matrix computation. In celebrated works of Umans with coauthors this is reduced in some sense to estimate of the number

$$\sum_{\chi \in Irr(G)} \chi(1)^3$$

for several types of graphs determined on the prime divisors of the order of a group. Let x be a natural number and $\pi(x)$ be the set of its prime divisors. If X is the set of natural numbers, then $\rho(X) = \bigcup_{x \in \pi(x)} \rho(x)$. Denote the graph $\Gamma(x)$ with the set $\rho(X) = V(X)$ of its vertices. Two vertices are adjacent if $pq | x$ for some $x \in X$.

Another graph $\Delta(X)$ on the set X is defined as follows. Vertices a and b are adjacent, if the greatest common divisor of a and b is bigger than one.

It seems that the first (after Cayley) graphs in group theory were invented by S. A. Chomikhin in 1938. In an explicit form this was done by L. Kazarin in 1978. Prime graph of Grünberg-Kegel, $\Gamma(G)$, became popular since 1981 after paper by J. S. Williams and later by A. S. Kondratiev in connection of a study of characterization of a simple groups by spectrums. In $\Gamma(G)$ the set X is the set of prime divisors of elements of G. In this case primes p and q are adjacent if there exists in G an element whose order is pq.

Another prime graph $\Gamma_{sol}(G)$ was invented by S. Abe and N. Iiyori. In this case X is the set of a prime divisors of solvable subgroups of G. Two primes p and q are adjacent if there exists a solvable subgroup of G whose order is divisible by pq.

One of recent results for this graphs related to finite simple groups is due B. Ambger and L. Kazarin. Previously S. Abe and N. Iiyori described finite simple groups whose graph $\Gamma_{sol}(G)$ is a clique. Define by $t_s(G)$ the largest number of independent vertices in $\Gamma_{sol}(G)$.

Theorem 4. Let G be a finite simple group such that $t_s(G) = 2$ (i.e. the dual graph to $\Gamma_{sol}(G)$ has no triangles). Then G is isomorphic to one of the following groups: $L^*_2(7)$, $S_4(q)$, $P$$\Omega^+_2(2)$, $D_4(2)$, $F_4(2)$, $G_2(3)$, $S_6(2)$, M_{11}, M_{12}, M_{22}, HS, McL, J_2, or $A_n(n \leq 10)$.

The proof uses two papers by A. V. Vasiliev and E. P. Vinogradov. As a corollary we obtain the description of slightly larger class of finite simple groups, than groups having a factorization by two soluble subgroups.
Theorem 5. Let G be a finite simple group with soluble subgroups A and B. If $\pi(G) = \pi(A) \cup \pi(B)$, then G belongs to the list of groups in the conclusion of Theorem 4.

The graph $\Gamma_A(G)$ was defined by L. Kazarin, A. Martinez-Pastor and M. D. Perez-Ramos in 2005. This graph is defined on the set of prime divisors of the order of a group G in a following manner. Two vertices p and q in $\pi(G)$ are adjacent if for a Sylow p subgroup P of G the order of a group $N_G(P)/PC_G(P)$ is divisible by q. Of course, the edge (q, p) exists if $|N_G(Q)/QC_G(Q)|$ is divisible by p.

One of the important results concerning these graphs is as follows:

Theorem 6. Let G be a finite almost simple group. Then the graph $\Gamma_A(G)$ is connected.

Note that if (p, q) is an edge in $\Gamma_A(G)$, then (p, q) is an edge in $\Gamma_{sol}(G)$, but the graph $\Gamma_A(G)$ of a soluble group could be non-connected. Hence our theorem 6 gives another proof of a theorem by S. Abe and N. Iiyori. Theorem 6 is a main tool for some results in formation theory concerning formation closed under taking of normalizers of Sylow subgroups.

References

Applications of Hoffman graphs

Jack Koolen

University of Science and Technology of China, Hefei, China
koolen@ustc.edu.cn

In this talk I will discuss the origins and recent applications of Hoffman graphs as defined by Woo and Neumaier (1995). Among these applications are to study graphs with smallest eigenvalue -3, constructing (regular) graphs with a fixed smallest eigenvalue, and trees with spectral radius three.
On colour-preserving automorphisms of Cayley graphs

Klavdija Kutnar
University of Primorska, Koper, Slovenia
klavdija.kutnar@upr.si

This is joint work with Ademir Hujdurović, Edward Dobson, Dave Morris and Joy Morris

We study the automorphisms of a Cayley graph that preserve its natural edge-colouring. In this talk recent results about colour-preserving automorphisms of Cayley graphs will be presented. More precisely, we are interested in groups G, such that every such automorphism of every connected Cayley graph on G has a very simple form: the composition of a left-translation and a group automorphism. We find classes of groups that have the property, and we determine the orders of all groups that do not have the property. We also have analogous results for automorphisms that permute the colours, rather than preserving them.
Notes on zeta functions of regular graphs

Jin Ho Kwak
Beijing Jiaotong University, China
jinkwak@postech.ac.kr

In this talk, we quickly review zeta functions of (di)graphs and computing L-functions associated with some graph coverings.
On even-closedness of vertex-transitive graphs

Dragan Marušič
University of Primorska, Koper, Slovenia
dragan.marusic@upr.si

When dealing with symmetry properties of combinatorial objects, such as graphs admitting a transitive group action, that is, *vertex-transitive graphs*, one of the fundamental questions is to determine their full automorphism group. While some symmetries of such objects are obvious, certain additional symmetries remain hidden or difficult to grasp. When this is the case, the goal is to find a reason for their existence and a method for describing them.

Along these lines the above question reads as follows: *Given a transitive group H acting on a set V of vertices of a graph, determine whether H is its full automorphism group or not. When the answer is no, find a method to describe the additional automorphisms.*

We propose to study such group “extensions” by considering the existence of *odd automorphisms* (as opposed to even automorphisms) that is automorphisms that act as odd permutations on the vertex set of a graph. The implications go beyond the simplicity of the concept of even/odd permutations alone. For example, given a group H consists of even permutations only, a partial answer to the above question could be given provided the structure of the graph in question forces existence of automorphisms acting as odd automorphisms.

In this talk some recent results in regards to the above problem will be considered. A special emphasis will be given to the class of cubic symmetric graphs where a complete solution will be presented. These results suggest that the even/odd question is likely to uncover certain much more complex structural properties of graphs that go beyond simple arithmetic conditions.
Triply even codes obtained from some graphs and finite geometries

Akihiro Munemasa
Tohoku University, Sendai, Japan
munemasa@math.is.tohoku.ac.jp

This is joint work with Koichi Betsumiya

A triply even code is a binary linear code in which the weight of every codeword is divisible by 8. By Lam and Yamauchi [3], every triply even code of length a multiple of 16 containing the all-ones vector is the structure code of some holomorphic framed vertex operator algebra. Motivated by this fact, we classified maximal triply even codes of length 48, and discovered an infinite family can be obtained from the triangular graphs [1].

In this talk, we present another infinite family of triply even codes, derived from the odd-orthogonal graphs [1, Section 12.2]. Let V be a 4-dimensional vector space over a finite field of odd characteristic, equipped with a nondegenerate quadratic form of Witt index 1. Define a graph Γ whose vertex set is the set of nonisotropic projective points of plus type, where two vertices are adjacent whenever the line through these points is a tangent. Then the row vectors of the adjacency matrix of Γ generate a triply even code of length \(q(q^2 + 1)/2\).

The proof of this fact amounts to showing that the number of common neighbors of three distinct vertices is always even.

References

Isomorphism problem for Cayley combinatorial objects

Mikhail Muzychuk
Department of Computer Sciences, Netanya Academic College, Netanya, Israel
muzy@netanya.ac.il

A Cayley object over a finite group H is any relational structure R with point set H which is invariant under the group of right translations H_R. The well-known examples of Cayley objects include Cayley graphs, Cayley maps, group codes etc. The isomorphism problem for Cayley objects may be formulated as follows: Given two combinatorial objects over the group H, find whether they are isomorphic or not.

In my talk I'll present the old and the new results which solves the above problem for different classes of objects.
Hamilton Cycles in Graphs Embedded into Surfaces

Roman Nedela
University of West Bohemia, Czech Republic

nedela@ntis.zcu.cz

This is joint work with M. Kotrbčík and M. Škoviera

Although hundreds of papers deal with the problem of existence of a Hamiltonian cycle in a graph, there is a lack of results on the hamiltonicity of cubic graphs. Among others, it is well-known that to decide whether a cubic graph is Hamiltonian is an NP-complete problem. The main idea of the talk is to present a new approach to investigate hamiltonicity of graphs. Instead of graphs, we consider graphs embedded into closed surfaces such that each face is bounded by a circuit (no repetitions of vertices are allowed). Such an embedding is called polytopal or circular. By the cycle-double-cover conjecture every 2-connected graph admits a polytopal embedding. In an embedded graph the set of hamilton cycles split into three classes: contractible, bounding but non-contractible cycles and non-separating cycles. We shall investigate bounding and contractible hamilton cycles.

Assume first that the underlying surface is sphere. Due to the Jordan curve theorem a Hamilton cycle C in a spherical map \mathcal{M} separates the surface into two disks bounded by C. Consider the two disjoint sets of faces A and B separated by C. Then it is not difficult to see that the corresponding sets of vertices A^* and B^* in the dual map induce two disjoint trees in \mathcal{M}^*. The main idea consists in reversing the above process. We shall try to identify a proper tree $T \subseteq \mathcal{M}$ (or a "one-face embedded" subgraph) in the dual \mathcal{M}^*, such that the topological closure of the faces in \mathcal{M} corresponding to the vertices of T will form a bordered surface with a connected boundary creating a bounding hamilton cycle in \mathcal{M}. We shall call the tree T a co-hamiltonian tree. Now, let \mathcal{M} be a polytopal map. In general, a bounding hamilton cycle in \mathcal{M} will always define a bi-partition of the vertex set of the dual map. In order to understand what sort of bi-partitions give a hamilton cycle in the original map, we introduce a useful concept of a 1-sided subgraph which generalizes the concept of an embedded tree. Using this concept we were able to prove a theorem stating that a map \mathcal{M} on a surface S admits a bounding hamilton cycle if and only if the vertex set of the dual \mathcal{M}^* admits a partition into two subsets which induce one-sided subgraphs H and K such that $\beta(H) + \beta(K) = \epsilon(S)$, where $\beta(H)$ and $\beta(K)$ are the Betti numbers and $\epsilon(S)$ is the Euler genus. The hamilton cycle is contractible if and only if one of the subgraphs H, K is a tree. The two subgraphs satisfying the statement will be called co-hamiltonian subgraphs.

Under certain circumstances we can guarantee existence of a vertex-bipartition in the dual map into two co-hamiltonian subgraphs, or we can prove that such a decomposition cannot exist. For instance, we show that the truncation of a triangulation without a separating 3-cycle has a hamilton path and if the number of triangles is congruent 2 mod 4 it has a bounding hamilton cycle. Also we shall deal with truncations of triangulations with faces of size at most 7. We show that such map is either hamiltonian, if the number of triangles is congruent 2 mod 4, or it has a hamilton path. This relates the result to a conjecture by Barnette, recently proved by Kardoš, stating that cubic polyhedral graphs with faces of size at most six are hamiltonian. Also we present a uniform approach to the problem of hamiltonicity of Cayley graphs coming from groups of the form

$$\langle x, y \mid y^2 = (xy)^3 = 1, \ldots \rangle,$$

investigated in papers by Glover, Youngs, Marušič, Kutnar and Malnič. A new result proves hamiltonicity, or at least existence of a hamilton path in Cayley graphs generated by three involutions x, y and z satisfying the relations $(xy)^3 = (yz)^3 = 1$. These are particular instances of a folklore conjecture stating that Cayley graphs are hamiltonian which solution does not seem to be in hand.
References

Is there a \((4, 27, 2)\) partial geometry?

Patrick Östergård

Aalto University, Finland

patric.ostergard@aalto.fi

This is joint work with Leonard Soicher

A \textit{partial geometry} with parameters \((s, t, \alpha)\) consists of lines and points with the properties that (i) each line has \(s + 1\) points and two distinct lines intersect in at most one point; (ii) each point is on \(t + 1\) lines and two distinct points occur on at most one line; and (iii) for each point \(p\) that does not lie on a line \(l\), there are exactly \(\alpha\) lines through \(p\) that intersect \(l\). The question whether there exists a \((4, 27, 2)\) partial geometry has tantalized researchers during the last couple of decades. Such a partial geometry would have 275 points and 1540 lines and its point graph would be a \((275, 112, 30, 56)\) strongly regular graph (srg). There is a unique srg with the aforementioned parameters called the McLaughlin graph. In this talk, a computer search for a \((4, 27, 2)\) partial geometry starting from the McLaughlin graph is described. After 270 core-years and more than one physical year, the computers claim that there is no such partial geometry.
On characterizations of association schemes by intersection numbers

Ilia Ponomarenko

St. Petersburg Department of V.A. Steklov Institute of Mathematics RAN, St. Petersburg, Russia

inp@pdmi.ras.ru

A coherent configuration \(\mathcal{X}\) is characterized by the intersection numbers if every algebraic isomorphism of this configuration to another one is induced by a combinatorial isomorphism; in this case, \(\mathcal{X}\) is said to be separable. The importance of this notion is explained by the fact that if the coherent configuration of a graph is separable, then the isomorphism of this graph to any other graph can be tested by the Weisfeiler-Leman algorithm \([4]\). Besides, the separability of a distance-regular graph (or, more general, of an association scheme) means in terms of \([1]\), that the graph is uniquely determined by its parameters.

The index of an association scheme \(\mathcal{X}\) with \(n\) points and \(m\) relations of valency 1 is defined to be the number \(n/m\). In \([2,3]\) it was proved that every quasi-thin or pseudocyclic scheme \(\mathcal{X}\) is separable whenever the index of \(\mathcal{X}\) is enough large in comparison with its maximal valency. It turns out that a similar result (with much better bound) holds for the class of TI-schemes, which contains the most part of quasi-thin schemes and all pseudocyclic schemes. Here, a TI-scheme can be thought as a combinatorial analog of the coherent configuration of a transitive group \(G\), the point stabilizer of which is a TI-subgroup of \(G\).

As a byproduct of the main result, we prove that every association scheme of prime degree \(p\) and valency \(k\) is schurian, whenever \(p > 1 + 6k(k - 1)^2\). This improves \([3, \text{Corollary 1.2}]\), where the lower bound for \(p\) was \(O(k^5)\).

References

On plateaued Boolean functions with the same spectrum support

Yuriy Tarannikov
Lomonosov Moscow State University, Moscow, Russia
yutarann@gmail.com

The Boolean function \(f \) is a map \(\mathbb{F}_2^n \to \mathbb{F}_2 \). The Walsh coefficient \(W_f(u) \) (also known as a spectral coefficient), \(u \in \mathbb{F}_2^n \), is defined as the real-valued sum:

\[
W_f(u) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + \langle x, u \rangle}.
\]

The plateaued Boolean function is the Boolean function whose Walsh coefficients take values \(\{0, \pm 2^c\} \) for some integer \(c \). The given set of Walsh coefficients defines the Boolean function uniquely. If the spectrum support of a plateaued Boolean function \(f \) is known (i.e., the set of all vectors \(u \in \mathbb{F}_2^n \) such that \(W_f(u) \neq 0 \)) then only signs of all Walsh coefficients are known, so the plateaued Boolean function is not defined uniquely. For the majority of spectrum supports \(S \) including the full space \(\mathbb{F}_2^n \), \(n \) even, \(n > 8 \), the number of plateaued functions with this spectrum support \(S \) is unknown whereas for some specific families the number of functions with such spectrum support was found (see for example [1]). We present some such constructions of spectra and analyse their symmetries. Also we discuss the problem of possible values of a rank (or an affine rank) for given spectrum supports of plateaued Boolean functions. This problem earlier was studied in [2,3] and recently the new upper bound for an arbitrary Boolean function with the given cardinality of a spectrum support (also known as a sparsity) was obtained in [4].

References

Cartan coherent configurations

Andrey Vasilev
Sobolev Institute of Mathematics SB RAS, Russia
vasand@math.nsc.ru

This is joint work with Ilia Ponomarenko

The Cartan scheme \mathcal{X} of a finite group G with a (B, N)-pair is defined to be the coherent configuration associated with the action of G on the right cosets of the Cartan subgroup $B \cap N$ by the right multiplications. It is proved that if G is a simple group of Lie type, then asymptotically, the coherent configuration \mathcal{X} is 2-separable, i.e. the array of 2-dimensional intersection numbers determines \mathcal{X} up to isomorphism. It is also proved that in this case, the base number of \mathcal{X} equals 2. This enables us to construct a polynomial-time algorithm for recognizing the Cartan schemes when the rank of G and order of the underlying field are sufficiently large. One of the key points in the proof of the main results is a new sufficient condition for an arbitrary homogeneous coherent configuration to be 2-separable.
The lit-only σ-game and some mathematics around

Yaokun Wu
Shanghai Jiao Tong University, China
ykwu@sjtu.edu.cn

This is joint work with Ziqing Xiang from University of Georgia

Let G be a graph. We regard the vertex space, which is the power set of the vertex set of G, as a vector space over the binary field F_2. For each vertex v in G, let T_v be the endomorphism of the vertex space mapping the vertex v to $v + N_G(v)$, where $N_G(v)$ is the neighbourhood of v in G, and mapping the vertex w to w itself for all other vertices w in G. In other words, T_v can be written as $id + N_G(v)v^*$, where v^* is the Kronecker function for v. Note that T_v is a transvection if v is not a loop vertex, namely if $v \not\in N_G(v)$, while T_v is a projection if v is a loop vertex, namely if $v \in N_G(v)$.

In the case that G is loopless, the set of all T_v’s, where v runs over the vertex set of G, generates a group, called the lit-only group of the graph G. We prove that the lit-only group is a semidirect product of a classical group over F_2 and an elementary abelian 2-group, and we give explicit description of the orbits of the corresponding group action.

In the case that G contains loops, the set of all T_v’s, which consists of possible transvections and some projections, generates a monoid. We describe the orbits of this monoid action.
A family of regular coherent non-Schurian graphs, related to extremal graph theory

Matan Ziv-Av
Ben-Gurion University of the Negev, Beer Sheva, Israel
matan@svgalib.org

This is joint work with Mikhail Klin and Guillermo Pineda-Villacencio

In this lecture we attempt to establish some natural links between Algebraic and Extremal graph theories (AGT and EGT, respectively).

We start by considering significant concepts in AGT such as coherent configurations and their particular case, association schemes. There exists an efficient, polynomial time, algorithm which for a given graph Γ, calculates the smallest coherent configuration $W(\Gamma)$ containing Γ as a union of basic graphs. Nowadays, $W(\Gamma)$ is called the WL-closure of Γ (in honor of Weisfeiler and Leman). Recently, this subject became more popular due to its links with the graph isomorphism problem.

We call a graph Γ coherent if it is a basic graph of $W(\Gamma)$. The coherent configuration $W(\Gamma)$ is called Schurian if it coincides with the centralizer algebra of $\text{Aut}(\Gamma)$, otherwise, $W(\Gamma)$ is non-Schurian.

Many extremal graphs have a rich automorphism group, in particular they are coherent and Schurian. Moore graphs of valencies 3 and 7, as well as the cages which are incidence graphs of classical generalized polygons are examples of such nice objects.

We will try to explain why in the framework of AGT the above mentioned classes of extremal graphs should be naturally substituted by coherent and non-Schurian graphs appearing as a subject of EGT.

A few sporadic examples will be considered together with a family of regular bipartite graphs on $2(q^2 - 1)$ vertices, $q \geq 3$ is a prime power. These graphs have valency q, diameter 4, and a rank 6 WL-closure with valencies 1, q, $q(q - 1)$, $q(q - 2)$, $q - 1$, $q - 2$.
Contributed talks
Spectra in ensembles of regular graphs

Daria Andryukhina
National Research University Higher School of Economics, Moscow, Russia
andryukhinad@gmail.com

This is joint work with Olga Valba

We consider ensembles of different regular graphs with size distributed in a certain known way. We find the eigenvalue density of such ensembles by analyzing spectra of their adjacency matrices and Laplacian matrices. Such subgraphs as path graphs, full binary and m-ary trees, star-trees are discussed.

The motivation is related to study of macromolecular solutions. It is known that sparse macromolecular clusters can be described by tree ensembles [1].

References

Erdős-Ko-Rado Properties of some Finite Groups

Ali Reza Ashrafi
Department of Pure Mathematics, University of Kashan, Kashan, Iran
ashrafi@kashanu.ac.ir

This is joint work with Maryam Jalali-Rad

Let G be a subgroup of the symmetric group $Sym(X)$ and A be a subset of G, where $X = \{1, 2, \ldots, n\}$. The subset A is said to be intersecting if for any pair of permutations $\sigma, \tau \in A$ there is $i \in X$ such that $\sigma(i) = \tau(i)$. A group G has Erdős-Ko-Rado (EKR) property, if the size of any intersecting subset of G is bounded above by the size of a point stabilizer in G. The group G has the strict EKR property if every intersecting set of maximum size is the coset of the stabilizer of a point.

In some recent papers [1–3], the Erdős-Ko-Rado property of 2–transitive groups and the groups $PGL_2(q), PGL_3(q)$ are investigated. In this talk, we report our recent results on the Erdős-Ko-Rado property of some different classes of finite groups.

References

Spectrum and L-Spectrum of the Cyclic Graph

Hamzeh Asma
University of Kashan, Kashan, Iran
hamze2006@yahoo.com

Let G be a finite group. The cyclic graph Γ_G is a simple graph with the vertex set G. Two elements $x, y \in G$ are adjacent in the cyclic graph if and only if $\langle x, y \rangle$ is cyclic [2]. Another graph is the power graph $P(G)$, that was introduced by Kelarev and Quinn in [4]. Two elements $x, y \in G$ are adjacent in the power graph if and only if one is a power of the other. In this paper we continue the work of [1] on computing Laplacian eigenvalues of the power graph of the cyclic and dihedral groups and two unpublished papers [2,3] in computing eigenvalues of the power graph and its main supergraph for some certain finite groups. As considered application, the algebraic connectivity, the number of spanning trees and Laplacian energy of these graphs were computed for the dihedral, semi-dihedral, cyclic and dicyclic groups.

References

Intersection of conjugate solvable subgroups in classical groups of Lie type

Anton Baykalov
Novosibirsk State University, Novosibirsk, Russia
anton188@bk.ru

Assume that a finite group G acts on a set Ω. An element $x \in \Omega$ is called a regular point if $|xG| = |G|$, i.e. if the stabilizer of x is trivial. Define the action of the group G on Ω^k by the rule

$$g : (i_1, \ldots, i_k) \mapsto (i_1g, \ldots, i_kg).$$

If G acts faithfully and transitively on Ω, then the minimal number k such that the set Ω^k contains a G-regular point is called the base size of G and is denoted by $b(G)$. For a positive integer m the number of G-regular orbits on Ω^m is denoted by $\text{Reg}(G, m)$ (this number equals 0 if $m < b(G)$). If H is a subgroup of G and G acts by the right multiplication on the set Ω of right cosets of H then G/H acts faithfully and transitively on the set Ω. (Here $H_G = \cap_{g \in G} H^g$.) In this case, we denote $b(G/H)$ and $\text{Reg}(G/H, m)$ by $b_H(G)$ and $\text{Reg}_H(G, m)$ respectively.

Thus $b_H(G)$ is the minimal number k such that there exist elements $x_1, \ldots, x_k \in G$ for which $H^{x_1} \cap \ldots \cap H^{x_k} = H_G$.

Consider the problem 17.41 from "Kourovka notebook" \cite{1}.

Let H be a solvable subgroup of finite group G and G does not contain nontrivial normal solvable subgroups. Are there always exist five subgroups conjugated with H such that their intersection is trivial?

The problem is reduced to the case when G is almost simple in \cite{2}. Specifically, it is proved that if for each almost simple group G and solvable subgroup H of G condition $\text{Reg}_H(G, 5) \geq 5$ holds then for each finite nonsolvable group G and maximal solvable subgroup H of G condition $\text{Reg}_H(G, 5) \geq 5$ holds.

Let p be a prime number and $q = p^l$. A cyclic irreducible subgroup $\text{Sin}_n(q)$ of $GL_n(q)$ of order $q^n - 1$ is called a Singer cycle. If H is a cycle subgroup of $GU_n(q)$ and $|H| = q^n - (-1)^n$ we also call it a Singer cycle and denote by $\text{Sin}_n(q)$.

By φ_n we denote an automorphism of $\text{Sin}_n(q)$ such that $\varphi_n : g \mapsto g^2$ if $G = GL_n(q)$ and $\varphi_1 : g \mapsto g^2$ if $G = GU_n(q)$.

We have proved the following

Theorem. Let G be isomorphic to $GL_n(q)$ or $GU_n(q)$ and H be a subgroup of G such that H is block diagonal with blocks isomorphic to $\text{Sin}_{n_i}(q) \rtimes \langle \varphi_n \rangle; i = 1, \ldots, k; \sum_{i=1}^k n_i = n$. Then $b_H(G) \leq 4$.

References

On finite minimal non-π-closed groups

Vyacheslav A. Belonogov
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
belonogov@imm.uran.ru

Let G be a finite group and π a set of primes. A group G having a normal π-Hall subgroup is called π-closed. We consider groups G such that G is not π-closed and all maximal subgroups of G are π-closed, i.e. G is a minimal non-π-closed group.

Theorem 1 [1] Theorem 1’. If G is a minimal non-π-closed group then either $G/\Phi(G)$ is a simple non-abelian group or G is a Schmidt group.

Thus, the study of the minimal non-π-closed groups reduces practically to the case of the simple non-abelian groups. Further we use the following notation. As usual $\pi(n)$ is the set of all primes dividing a natural n. If q is a prime power then $S(q) := \{q_0 \in \mathbb{N} \mid q = q_0^r \text{ for some } r\}$. If $P(x)$ is a integral polynomial on x then $\pi_0(P(q)) := \pi(P(q)) \setminus \bigcup_{q_0 \in S(q)}\pi(P(q_0))$.

Theorem 2 [2,3]. Let G be a finite simple non-abelian group different from $\PSL_r(q)$ and $\PSU_r(q)$ with an odd prime r and $E_5(q)$ (everywhere q is a prime power), and $\pi \subseteq \pi(G)$. The following conditions are equivalent:

1. G is a minimal non-π-closed group;
2. $2 \notin \pi$, $\pi \neq \emptyset$ and one of the following conditions holds:
 1. $G \cong A_r$ where $r \geq 5$ is a prime different from $11, 23$ and $(q^n - 1)/(q-1)$ where q is a prime power and $n \in \mathbb{N}$, and $\pi = \{r\}$;
 2. $G \cong \PSL_2(q)$, $q > 5$, $\pi(G) = \{p\}$, and one of the following conditions holds:
 1. $2a$ $q = p$ and either $\pi \subseteq \pi(p+1) \setminus \{3, 5\}$ or $p \in \pi \subseteq \pi(p^2 - 1) \setminus \{3, 5\}$;
 2. $2b$ $q = p^n > p$, $\pi \subseteq \pi_0(q+1) \setminus \{5\}$, and $3 \notin \pi$ if $p > 2$;
 3. $G \cong \Sz(q)$ ($q = 2^{2n+1} \geq 8$), $\pi \subseteq \pi_0(q+1)$ for non-prime $2n+1$ and $\pi \subseteq \pi(q^2 + 1)$ for prime $2n+1$;
 4. $G \cong \PSL_2(q)$ ($q = 3^{2n+1} \geq 27$), $\pi \subseteq \pi_0(q^2 - q + 1)$ for non-prime $2n+1$ and $\pi \subseteq \pi(q^2 - q + 1)$ for prime $2n+1$;
 5. $G \cong \PSL_2(q)$ and $\pi \subseteq \pi_0(q^4 - q^2 + 1)$;
 6. $G \cong \PSU_2(q)$ ($q = 2^{2n+1} \geq 8$) and $\pi \subseteq \pi_0(q^4 - q^2 + 1)$;
 7. G is one of the sporadic groups $M_{23}, J_1, J_4, L_9, F_{24}$, F_2 and π is as in [2] Theorem 2.

Thus, for the complete description of the all pairs (G, π) where G is a simple non-minimal non-π-closed group it remains to consider only three series of groups G: $\PSL_r(q)$ and $\PSU_r(q)$ with an odd prime r and $E_8(q)$.

The work is supported by the Complex Program of UB RAS (project 15-16-1-5).

References

[1] V. A. Belonogov, On finite groups whose all maximal subgroups are π-closed, Works of Int. Scool-Conf. on group theory, ded. to 70 of V. V. Kabano, Nalchik, 2014, 6-9. (In Russian)

Unicyclic signed graphs with minimal energy

Mushtaq A. Bhat

Department of Mathematics Indian Institute of Technology Bombay, Mumbai, India
mushtaqab1125@gmail.com, mushtaqab@math.iitb.ac.in

A connected signed graph with \(n \) vertices is said to be unicyclic if its number of edges is \(n \). The energy of a signed graph \(S \) of order \(n \) with eigenvalues \(x_1, x_2, \ldots, x_n \) is defined as \(E(S) = \sum_{j=1}^{n} |x_j| \). In this paper, we obtain integral representations for the energy of a signed graph. It is shown that even and odd coefficients of the characteristic polynomial of a unicyclic signed graph respectively alternate in sign. As an application of integral representation, energy of signed graphs obtained from a unicyclic graph is compared. As a consequence of these results, we characterize unicyclic signed graphs with minimal energy.

References

Completabilit\'y of hamiltonian cycle in halved cube

Igor S. Bykov
Novosibirsk State University, Novosibirsk, Russia
patrick.no10@gmail.com

Halved cube $\frac{1}{2}Q_n$ – is a graph, whose vertex set is a set of all binary words of length n with even (odd) weight; two vertices are adjacent if Hamming distance between them equals 2. Halved cube graphs were studied in several papers [1,2]. We consider hamiltonian cycles in halved cube graphs, in particularly, completability of these cycles. Let

$$C^{1/2} = v_1, v_2, v_3, \ldots, v_{2^{n-1}}, v_{2^n-1}$$

be a hamiltonian cycle in $\frac{1}{2}Q_n$. We call this cycle \textit{completable} if there are binary words $u_1, u_2, \ldots, u_{2^n-1}$ of length n such that cycle

$$C = v_1, u_1, v_2, u_2, v_3, u_3, \ldots, v_{2^{n-1}}, u_{2^n-1}$$

is hamiltonian in Q_n.

For any $n \geq 4$ we prove existence of hamiltonian cycle in $\frac{1}{2}Q_n$, which is not completable.

For hamiltonian cycle $C^{1/2}$ in $\frac{1}{2}Q_n$ we create auxiliary graph $G(C^{1/2})$. Without loss of generality we assume, that $C^{1/2}$ is a cycle, containing all binary words of length n with odd weight.

Vertex set of $G(C^{1/2})$ – all binary words of length n with even weight. We call vertex $x \in V(G(C^{1/2}))$ \textit{closest vertex to edge} (u, v) of cycle $C^{1/2}$, if $d(u, v) = d(u, x) + d(x, v)$. Obviously, for any edge of $C^{1/2}$ there are exactly two closest vertices. Then, for every edge e of $C^{1/2}$, we add edge (v, u) to graph G, where u and v are closest vertices to e.

Necessary and sufficient condition of cycle completability is stated in terms of auxiliary graph $G(C^{1/2})$:

\textbf{Theorem.} Hamiltonian cycle $C^{1/2}$ in $\frac{1}{2}Q_n$ is completable iff there is no trees among connected components of $G(C^{1/2})$.

\textbf{References}

Groups with the minimal condition for non-abelian noncomplemented subgroups

Nickolay Chernikov
Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
chern@imath.kiev.ua

Remind that the group G is called Shunkov, if for any its finite subgroup K, every subgroup of the factor group $N_G(K)/K$, generated by two conjugate elements of prime order, is finite (V. D. Mazurov).

The class of periodic Shunkov groups is large and includes, for instance, the classes of 2-groups and binary finite groups. The class of locally graded groups is extremely large. The following new author’s theorem holds.

Theorem. Let G be a non-abelian periodic Shunkov group or a non-abelian locally graded group. Then G satisfies the minimal condition for non-abelian non-complemented subgroups iff it is a Chernikov group or an infinite periodic solvable group with complemented non-abelian subgroups.

The known Olshanskiy’s Examples of infinite simple groups with abelian proper subgroups (see, for instance, [1]) show that in this theorem the condition: “G is periodic Shunkov or locally graded” is essential. Note: the Shunkov groups with the minimal condition for abelian noncomplemented subgroups are completely described by N. S. Chernikov [2].

References

Automorphism groups of cyclotomic schemes over finite near-fields

Dmitry Churikov
Novosibirsk State University, Novosibirsk, Russia
churikodv@gmail.com

This is joint work with Andrey Vasilev

An algebraic structure $K = \langle K, +, o \rangle$ is called a (right) near-field, if $K^+ = \langle K, + \rangle$ is a group, $K^\times = \langle K \setminus \{0\}, o \rangle$ is a group, $(x + y) \circ z = x \circ z + y \circ z$ for all $x, y, z \in K$, and $x \circ 0 = 0$ for all $x \in K$. Finite near-fields can be constructed via finite fields except for a finite number of near-fields [1]. The first ones are called Dickson near-fields, the last ones are Zassenhaus near-fields.

Let K be a finite near-field and K be a subgroup of the group K^\times, $\mathcal{R}_K = \{ R_K(a) \mid a \in K \}$, where $R_K(a) = \{(x, y) \in K^2 \mid x - y \in K \circ a \}$. The pair (K, \mathcal{R}_K) is called cyclotomic scheme over the near-field K with the base group K. Cyclotomic schemes over finite fields were defined by Delsarte for the algebraic theory of codes [2], cyclotomic schemes over finite near-fields were introduced in [4].

The automorphism group of the cyclotomic scheme $\mathcal{C} = (K, \mathcal{R}_K)$ can be defined as the automorphism group of its partition \mathcal{R}_K, namely, $\text{Aut}(\mathcal{C}) = \{ g \in \text{Sym}(K) \mid R^g = R, R \in \mathcal{R}_K \}$. Observe that $\text{Aut}(\mathcal{C}) = \text{Sym}(K)$ if the base group of the cyclotomic scheme \mathcal{C} equals K^\times.

If F is the finite field of order q, K is a proper subgroup of F^\times, then the automorphism group of the cyclotomic scheme $\mathcal{C} = (K, \mathcal{R}_K)$ is a subgroup of $\text{AGL}(1, q) = \{ x \mapsto ax + c \mid x \in F, a \in F^\times, c \in F^+, \sigma \in \text{Aut}(F) \}$ [3]. The same result was achieved in [4] for cyclotomic schemes over Dickson near-fields with some restrictions on the orders of their base groups. Here we complete the description of the automorphism groups of cyclotomic schemes over finite near-fields.

Theorem. Let K be a finite near-field of order q, K a proper subgroup of K^\times, and $\mathcal{C} = (K, \mathcal{R}_K)$ the corresponding cyclotomic scheme. Then $\text{Aut}(\mathcal{C}) \leq \text{AGL}(1, q)$ except for a finite number of exceptional schemes. If \mathcal{C} is one of the exceptions, then the subgroup H of $\text{Sym}(K)$ with $\text{Aut}(\mathcal{C}) \leq H$ is determined. In particular, if the base group K is solvable, then so is $\text{Aut}(\mathcal{C})$.

It is worth mentioning that one of the key tools of our proof is the recent classification of $\frac{3}{2}$-transitive permutation groups [5].

References

On periodic subgroups of the finitary linear group over an integral domain

Olga Yu. Dashkova
The Branch of Moscow State University in Sevastopol, Sevastopol, Russia
odashkova@yandex.ru
This is joint work with M. A. Salim

Let $FL_\nu(K)$ be the finitary linear group where K is a ring with the unit, ν is a linearly ordered set. $FL_\nu(K)$ is investigated in [1, 2]. In particular the finitary unitriangular group $UT_\nu(K)$ is studied in [2].

We study periodic subgroups of the finitary linear group $FL_\nu(K)$ in the case where K is an integral domain, ν is a countable set.

The main result of this paper is the theorem.

Theorem. Let G be a periodic subgroup of $FL_\nu(K)$, K be an integral domain, ν be a countable set. Then G is a (locally nilpotent)-by-countable and locally finite group.

References

Automorphisms of distance-regular graph with intersection array \(\{121, 90, 1; 1, 30, 121\}\)

Konstantin Efimov

Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

konstantin.s.efimov@gmail.com

This is joint work with Alexander Makhnev

Suppose that \(\Gamma\) — antipodal distance-regular graph of diameter 3 with \(\lambda = \mu\), in which the neighbourhood of each vertex is strongly regular with parameters \((v', k', \lambda', \mu')\). In this case \(\Gamma\) has the intersection array \(\{k, \mu(r-1), 1; 1, \mu, k\}\), and the spectrum \(k^1, \sqrt{\lambda} k^2, -\sqrt{\lambda} k^2\), where \(k = v', \mu = (v' - k')/(r-1)\) and \(f = (k+1)(r-1)/2\). Further, the number \(\lambda' + 1\) is even. Makhnev A.A. and Samoilenko M.S. \([1]\) selected parameters of strongly regular graphs with no more than 1000 vertices, satisfying these conditions. In this paper automorphisms of distance-regular graph \(\Gamma\) with intersection array \(\{121, 90, 1; 1, 30, 121\}\) and of strongly regular graph with parameters \((121, 30, 11, 6)\) are investigated.

Theorem 1. Let \(\Gamma\) be strongly regular graph with parameters \((121, 30, 11, 6)\), \(G = \text{Aut} (\Gamma)\), \(g\) element of prime order \(p\) of \(G\) and \(\Omega = \text{Fix} (g)\). Then \(\pi (G) \subseteq \{2, 3, 5, 7, 11\}\) and one of the following holds:

1. \(\Omega\) is empty graph and \(p = 11\);
2. \(\Omega\) is \(n\)-clique, either \(n = 1\), \(p = 3, 5\), or \(n = 3t + 1\), \(p = 3\) or \(n = 2t + 1\) and \(p = 2\);
3. \(\Omega\) is \(m\)-co clique, either \(m = 3t + 1\), \(p = 3\) or \(m = 2t + 1\) and \(p = 2\);
4. \(\Omega\) contains an edge and is the union of \(s\) isolated cliques, either \(p = 3\), the number of vertices in maximal clique from \(\Omega\) is congruent to \(1\) by module \(3\) and \(s\) is congruent to \(1\) by module \(3\), or \(p = 2\), the number of vertices in maximal clique from \(\Omega\) is odd and \(s\) is even;
5. if \(\Omega\) contains \([a]\) for some vertex \(a \in \Omega\), then \(p \leq 3\) and in the case \(|\Omega| = 31\) we have \(p = 3\);
6. \(\Omega\) contains geodesic 2-way, \(p \leq 7\) and in the case \(p = 7\) subgraph \(\Omega\) is strongly regular with parameters \((16, 9, 4, 6)\).

Theorem 2. Let \(\Gamma\) be a distance-regular graph \(\Gamma\) with intersection array \(\{121, 90, 1; 1, 30, 121\}\), \(G = \text{Aut} (\Gamma)\), \(g\) be an element of prime order \(p\) of \(G\) and \(\Omega = \text{Fix} (g)\) contains \(s\) vertices in \(t\) antipodal classes. Then \(\pi (G) \subseteq \{2, 3, 5, 7, 11, 13, 23, 61\}\) and one of the following holds:

1. \(\Omega\) is empty graph, \(p = 2, 6, 11\);
2. \(\Omega\) is the antipodal class of \(\Gamma\), \(p = 11\);
3. \(\Omega\) is a \(t\)-clique, \(p = 3\) and \(t = 2, 5, 8, 11\);
4. \(p = 23\), \(\Omega\) is a distance-regular graph with intersection array \(\{29, 21, 1; 1, 7, 29\}\), or \(p = 13\) and \(\Omega\) is a distance-regular graph with intersection array \(\{17, 12, 1; 1, 4, 17\}\);
5. \(p = 7\), \(t = 10, 17, 24\) and in the case \(t = 10\) subgraph \(\Omega\) is a distance-regular graph with intersection array \(\{9, 6, 1; 1, 2, 9\}\);
6. \(p = 5\), \(t = 2, 7, 12, 17, 22, 27\) and in the case \(t = 7\) subgraph \(\Omega\) is the union of four isolated 7-cliques;
7. \(p = 3, s = 4\), \(t = 3l + 2\), \(l \leq 9\) and in the case \(t = 5\) subgraph \(\Omega\) is the union of four isolated 5-cliques;
8. \(p = 2, s > 0\), any vertex from \(\Gamma - \Omega\) is adjacent with even number vertices in \(\Omega\) and either \(s = 2\), \(t \leq 60\), or \(s = 4\), \(t \leq 30\).

Corollary. Let \(\Gamma\) be a vertex-symmetric distance-regular graph \(\Gamma\) with intersection array \(\{121, 90, 1; 1, 30, 121\}\). Then \(\Gamma\) is the arc-transitive graph with the socle of automorphism group isomorphic to \(Z_2 \times L_2(121)\).

This work was supported by the grant of Russian Science Foundation, project no. 14-11-00061.

References

Threshold function for the edge connectedness of random bipartite graphs

Anton N. Fedorov
Ural Federal University, Ekaterinburg, Russia
vorkulsky@gmail.com

Random graphs constitute a big area in the modern graph theory; see, e.g., [1]. The Erdős–Rényi model (fixing the number \(m(n)\) of the edges) and the Gilbert model (fixing the probability \(\rho(n)\) of an edge) are standard models of the random graph. One of the main directions of the study of random graphs concerns threshold functions for different graph properties. Threshold functions are also considered for properties in particular classes of graphs, like bipartite graphs.

In [2], a combinatorial problem on words was reduced to finding the threshold function for the edge connectedness of random bipartite graphs in the Erdős–Rényi model. This function was found in [2] under some restrictions on the size \(p, q\) of the parts of the graph (we assume \(p \geq q\)). If one part is much smaller than the other (namely, \(q = o(\frac{p}{\ln p})\)), then \(\phi(p, q) = \sqrt{pq \ln q + O(1)}\) is the threshold function; if the sizes of the parts are close \((q = o(\frac{p}{\ln p}))\), then the threshold function is

\[f(p, q) = \frac{pq}{p+q} \left(\ln \frac{pq}{p+q} + \ln \frac{pq}{p+q} + O(1) \right). \]

The above results leave a range of growth rates of \(q\) uncovered. We analyze the behaviour of random bipartite graphs in this range. Our contribution is as follows.

1. The problem of searching the threshold function for the edge connectedness of random bipartite graphs in the Erdős–Rényi model is reduced to the same problem in the Gilbert model and vice versa. In particular, \(f(p, q)\) and \(\phi(p, q)\) are thresholds for the connectedness of random bipartite graphs in the Gilbert model in the same range of growth rates of \(q\).

2. If \(q = \alpha \frac{p}{\ln p} + o(\frac{p}{\ln p}), 0 < \alpha < \ln \ln p\), then both \(\phi(p, q)\) and \(f(p, q)\) are strictly smaller than the threshold function; the same result applies for the Gilbert model.

3. If \(\alpha < 1\), then \(\phi(p, q) > f(p, q)\); replacing \(O(1)\) in \(\phi(p, q)\) with any \(o(\ln q)\) function does not give the threshold function: the expected number of tree components with a single vertex in a smaller part and \((\frac{1}{\sqrt{\alpha}} - \alpha) \ln q\) vertices in a bigger part remains non-zero.

4. If \(\alpha > 1\), then \(f(p, q) > \phi(p, q)\); replacing \(O(1)\) in \(f(p, q)\) with any \(O(\frac{\ln^2 \ln q}{\ln \ln q})\) function does not give the threshold function: the expected number of tree components with a single vertex in a smaller part and \(2 \ln \ln q\) vertices in a bigger part remains non-zero. Moreover, if \(\alpha = O(1)\), replacing \(O(1)\) in \(f(p, q)\) with any \(O(\frac{\ln q}{\ln \ln q})\) function does not give the threshold function: the expected number of tree components with a single vertex in a smaller part and \(\frac{\ln p}{\ln \ln p}\) vertices in a bigger part remains non-zero.

5. If \(\alpha < 1\), both symbolic and numerical computations support the following conjecture: the threshold function grows as \(\beta \sqrt{pq \ln q}\), where \(\beta > 1\) depends on \(\alpha\) and is bounded.

References

Asymptotic approximation for the number of n-vertex graphs with given diameter

Tatiana I. Fedoryaeva
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
fti@math.nsc.ru

Let $J_{n,d=k}$, $J_{n,d\geq k}$, $J_{n,d\geq k}^*$ be the following classes of labeled n-vertex ordinary graphs: graphs of the diameter k, connected graphs of the diameter at least k, and graphs (not necessarily connected) with a shortest path of the length at least k, respectively. It is well known that almost all graphs have diameter 2. Consequently, the number of labeled n-vertex graphs of the diameter 2 is equal to the number $2^{\binom{n}{2}}$ of all n-vertex graphs asymptotically. This result was probably first established in [1]. For the number of graphs of a fixed diameter $k \geq 3$, the asymptotic formula $|J_{n,d=k}| = 2^{\binom{n}{2}}(6 \cdot 2^{-k} + o(1))^n$ as $n \to \infty$ was obtained in [2]. The same formula for the number $|J_{n,d\geq k}|$ of connected graphs of the diameter at least k was established in [3]. However, this formula does not give an asymptotically exact value of the number of graphs in the classes $J_{n,d=k}$, $J_{n,d\geq k}$ and error estimates in such asymptotic approximation. For any $k \geq 3$, the asymptotics of the number $|J_{n,d=k}|$ of graphs with the fixed diameter k was found in [4] with an approximation error $r(n)$ satisfying the following estimates for all large enough n: $-c\left(\frac{9}{16}\right)^{n-k} \leq r(n) = O\left(k^2(n-k-1)^4\left(\frac{11}{12}\right)^{n-k-1}\right)$, where $c > 0$ is a constant independent of $n-k-1$.

It is obvious that $J_{n,d=k} \subseteq J_{n,d\geq k} \subseteq J_{n,d\geq k}^*$ and all inclusions are strict for $n \geq k+2$. In the present paper, the asymptotics of the number $|J_{n,d\geq k}^*|$ is found. As a consequence, it is proved that these three classes of graphs have the same asymptotic cardinality. Used methods of graph theory and method of mathematical induction led to a fairly simple proof of calculating the asymptotics of the number $|J_{n,d=k}|$.

Theorem. Let $k \geq 3$ and $0 < \varepsilon < 1$. Then there is a constant $c_k > 0$ independent of n such that for any $n \in \mathbb{N}$ the following inequalities hold:

$$2^{\binom{n}{2}}(1-\varepsilon_{n,k}) \leq |J_{n,d=k}| \leq |J_{n,d\geq k}| \leq |J_{n,d\geq k}^*| \leq 2^{\binom{n}{2}}\xi_{n,k}(1+\varepsilon_{n,k}),$$

where $\xi_{n,k} = q_k(n)k^{-1}\left(\frac{3}{2k-1}\right)^{n-k+1}$, $\varepsilon_{n,k} = c_k\left(\frac{5+\varepsilon}{6}\right)^n = o(1)$,

$$q_k = \frac{1}{2}(k-2)\cdot 2^{-\binom{k-3}{2}}, \quad (n)_{k} = n(n-1)\cdots(n-k+1).$$

Note that the asymptotic approximation for the number $|J_{n,d=k}|$ obtained in our theorem is more precise than in [4] if $\varepsilon \in (0,\frac{1}{2})$. Furthermore, the constant c_k is indicated explicitly.

Corollary 1. Let $k \geq 3$. Then the following asymptotic equalities hold:

$$|J_{n,d=k}| \sim |J_{n,d\geq k}| \sim |J_{n,d\geq k}^*| \sim 2^{\binom{n}{2}}\xi_{n,k}.$$

Corollary 2. Almost all graphs of a fixed diameter $k \geq 3$ have a unique pair of diametrical vertices, but almost all graphs of the diameter 2 have more than one pair of such vertices.

Research is supported by the Russian Foundation for Basic Research (project No 14-01-00507).

References

Structure and Automorphism group of Involution G-Graphs and Cayley Graphs

Farzaneh Gholaminezhad
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Iran
gholaminezhad@grad.kashanu.ac.ir

This is joint work with A. R. Ashrafi and A. Bretto

Let G be a finite group with identity element 1 and Inv be the set of all involutions in G. The involution G–graph $\phi = \phi(G, Inv)$ is a particular G–graph introduced by Alain Bretto 2005. The set of vertices of this graph contains the cycles of $(s)x = (x, sx, s^2x, \ldots, s^{o(s)-1}x)$, where $s \in S$ and $x \in T_s$, a set of right transversal of s in G. Two vertices $(s_1)x$ and $(s_2)y$ are adjacent in ϕ when the intersection set of their supports has more than one element. The G–graphs have many properties similar to Cayley graphs but they are more general than the Cayley graphs and most of the well-known graphs are G–graphs. The aim of this work is obtaining the structures and the automorphism groups of the involution G–graphs for some classes of finite groups and some simple groups generated by their involutions and then comparing them with the automorphism groups of the involution Cayley graphs. To do our computational work we use GAP and the finite representation of the groups. Some of the finite groups which we will consider have the representations as follows:

$$
D_{2n} = \langle a, b | a^n = b^2 = 1, b^{-1}ab = a^{-1} \rangle,
V_{8n} = \langle a, b | a^{2n} = b^4 = 1, aba = b^{-1}, ab^{-1}a = b \rangle,
SD_{8n} = \langle a, b | a^{4n} = b^2 = 1, bab = a^{2n-1} \rangle,
T_{4n} = \langle a, b | a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle,
U_{2nm} = \langle a, b | a^{2n} = b^m = 1, aba^{-1} = b^{-1} \rangle.
$$

References

On the spectra of non-commuting graphs

Modjtaba Ghorbani

Department of Mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran
mghorbani@srttu.edu

This is joint work with Maryam Jalali-Rad

All graphs considered in this paper are simple and finite. Also, all groups are finite and non-abelian. There are a number of constructions of graphs from groups or semi-groups in the literature. Let G be a non-abelian group with center $Z(G)$. The non-commuting graph (NC-graph) $\Gamma(G)$ is a simple and undirected graph with the vertex set $G \setminus Z(G)$ and two vertices $x, y \in G \setminus Z(G)$ are adjacent whenever $xy \neq yx$. The concept of NC-graphs was first considered by Paul Erdős to answer a question on the size of the cliques of a graph in 1975. For background materials about non-commuting graphs, we encourage the reader to see reference [1]. The non-commuting graph $\Gamma(G)$ of group G was first considered by Paul Erdős to answer a question on the size of the cliques of a graph in 1975, see [2]. In this article, we prove that regular non-commuting graphs are Eulerian. We also prove that there is no 2^*q-regular non-commuting graph, where q is a prime number greater than 2.

An integral graph is a graph with integral spectrum.

Theorem. If $\Gamma(G)$ is k-regular integral non-commuting graph where $k \leq 16$, then $k = 4$ and $G \cong D_8, Q_8$ or $k = 8$ and $G \cong Z_2 \times D_8, Z_2 \times Q_8, SU(2), M_{16}, Z_4 \times Z_4, Z_4 \rtimes Z_2 \times Z_2$ or $k = 16$ and $G \cong$ SmallGroup(32, i), where $i \in \{2, 4, 5, 12, 17, 22, 23, 24, 25, 26, 37, 38, 46, 47, 48, 49, 50\}$.

References

Splitting planar graphs of bounded girth to subgraphs with short paths

Aleksey N. Glebov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
angle@math.nsc.ru

A graph $G = (V, E)$ is (a, b)-partitionable for positive integers a, b if its vertex set can be partitioned to subsets V_1 and V_2 such that induced subgraphs $G[V_1]$ and $G[V_2]$ do not contain paths of length exceeding $a-1$ and $b-1$ respectively. Mihok [4] showed that for any constants a and b their exists series of planar graphs which are not (a, b)-partitionable. However, all examples of graphs constructed by Mihok contain many 3-cycles. On the other hand, for planar graphs with sufficiently large girth it was established in series of papers that they are (a, b)-partitionable for small a and b. For example, in [2] it was proved that any planar graph with girth at least 7 is $(2,2)$-partitionable. Therefore, a question arises: what is the smallest integer g such that there exist positive integers a, b with the property that any planar graph with girth at least g is (a, b)-partitionable?

For planar graphs with girth at least 6, it was recently proved that they are $(5,5)$-partitionable [3] and that the vertex set of any such a graph can be partitioned to subsets V_1 and V_2 such that both subgraphs $G[V_1]$ and $G[V_2]$ are linear forests whose paths have length at most 14 [1]. Another important result in [1] is a construction of series of planar graphs with girth 4 which are not (a, b)-partitionable for any given a and b. So it follows by the results in [1,3], that $5 \leq g \leq 6$.

In this paper we make the final step in determining g by proving that any planar graph with girth at least 5 is $(7,7)$-partitionable. Hence we establish that $g = 5$. Furthermore, we prove the list version of our main result: if every vertex v of a graph is given a list $L(v)$ of two colours then we can colour the graph vertices from their list in such a way that each monochromatic component is a tree of diameter at most 6.

The work is supported by RFBR (projects 15-01-00976 and 15-01-05867).

References

Graphs and Groups, Spectra and Symmetries

Abstracts – Contributed Talks

Improving some bounds for multiple domination parameters in graphs

Hamid Reza Golmohammadi

Ale-Taha Institute Of Higher Education, Tehran, Iran
hgolmohammadi26@gmail.com

For a graph $G = (V, E)$, the open neighborhood of a vertex $v \in V$ is $N(v) = \{ u \in G \mid uv \in E(G) \}$ and the closed neighborhood is $N[v] = N(v) \cup \{ v \}$. A set $S \subseteq V$ is a dominating set if each vertex in $V(G) \setminus S$ is adjacent to at least one vertex of S. Equivalently, S is a dominating set of G if $|N(v) \cap D| \geq 1$ for each $v \in V$. Several multiple counterparts of such sets are known. In particular, D is said to be a k-dominating set, if every vertex v not in D satisfies $|N(v) \cap D| \geq k$ or a k-tuple dominating set if $|N[v] \cap D| \geq k$ for each $v \in V$, or a k-tuple total dominating set if every vertex has at least k neighbours in D and etc. We believe all of these concepts can be represented by a comprehensive definition. Therefore we introduce a new domination parameter as a generalization of multiple domination parameters and we improve some results of this topic.

References

The linear spectrum of a quadratic APN function and related open problems

Anastasiya Gorodilova
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
gorodilova@math.nsc.ru

A Boolean function $F : \mathbb{F}_2^n \to \mathbb{F}_2$ can be uniquely represented in algebraic normal form (ANF) as a n-variable polynomial with coefficients in \mathbb{F}_2. The algebraic degree of F is degree of its ANF. A function F is affine (linear) if its algebraic degree is not more than 1 (additionally, $F(0) = 0$); and quadratic if its algebraic degree is equal to 2. F and F' are called extended affine equivalent (EA-equivalent) if $F' = A' \circ F \circ A'' + A$, where A', A'' are affine permutations of \mathbb{F}_2^n and A is an affine function on \mathbb{F}_2^n.

A function F is called almost perfect nonlinear (APN) if for any $a, b \in \mathbb{F}_2^n$, $a \neq b$, equation $F(x) + F(x + a) = b$ has at most 2 solutions. Equivalently, F is APN if $|B_a(F)| = |\{F(x) + F(x + a) \mid x \in \mathbb{F}_2^n\}| = 2^{n-1}$ for any nonzero vector a. APN functions are of a great interest for using in cryptographic applications as S-boxes due to their optimal differential properties. Despite the fact that this class has been intensively studied for about half a century there are many open problems concerning APN functions.

Further we consider only quadratic APN functions. In this case $B_a(F)$ is an affine hyperplane for all nonzero $a \in \mathbb{F}_2^n$ and $B_a(F + L) = B_a(F)$ or $B_a(F + L) = \mathbb{F}_2^n \setminus B_a(F)$, where F is a quadratic APN function and L is a linear function. Let us denote by $k_F^n = |\{a \in \mathbb{F}_2^n \setminus \{0\} : B_a(F) = B_a(F + L)\}|$. By the linear spectrum of F we will mean the vector of values $\Lambda^F = (\lambda^F_0, \ldots, \lambda^F_{2^{n-1}-1})$, where λ^F_k is equal to the number of linear functions L such that $k_F^n = k$.

Statement 1. The linear spectrum of a quadratic APN function is an EA-invariant.

Statement 2. Let F be a quadratic APN function in n variables, n is even. Then the following statements hold: 1) $\lambda^F_k = 0$ for all even $k = 0, \ldots, 2^n - 1$ and also for all odd $k < (2^n - 1)/3$; 2) $\lambda^F_{2^n-1} \geq 2^n$.

Hypothesis. Let F be a quadratic APN function in n variables, n is odd. Then the following statements hold: 1) $\lambda^F_k = 0$ for all even $k = 0, \ldots, 2^n - 1$ and also for all odd $k < (2^n - 1)/3$; 2) $\lambda^F_{2^n-1} = 2^n$.

This hypothesis is computationally proved for $n = 3, 5$; the second item is also verified for all known quadratic APN functions in 7 variables.

Let us consider two open problems related to the linear spectrum of a quadratic APN function. The first one consists in obtaining an iterative construction of quadratic APN functions mentioned in [1]. For this construction, given a quadratic APN function F in n variables, we need to find a linear function L such that the special admissibility conditions hold for F and L. It can be shown that if $k_F^n > 2^n - 1$, then these conditions do not hold. The questions arise: what is the minimal k, say k_{min}, such that $\lambda^F_{k} > 0$ and does there always exist a linear function L with $k_F^n = k_{min}$ such that the admissibility conditions hold?

The second problem consists in finding $\lambda^F_{2^n-1}$ for an arbitrary quadratic APN function F. An answer to this problem will be the first step in solving the wider open problem formulated in [2] by C. Carlet but that was in minds of many specialists. The problem is to describe all APN functions G for a given APN function F such that $B_a(F) = B_a(G)$ for all $a \in \mathbb{F}_2^n$, $a \neq 0$. We prove the following theorem for one known class of quadratic APN functions.

Theorem. Let $F : \mathbb{F}_2^n \to \mathbb{F}_2$, be a Gold function $F(x) = x^{2^k+1}$, where gcd$(k, n) = 1$. Then the following statements hold: 1) if $n = 4t$ for some t and $k = n/2 \pm 1$, then $\lambda^F_{2^n-1} = 2^{n+n/2}$; 2) otherwise $\lambda^F_{2^n-1} = 2^n$.

The research is supported by the Russian Foundation for Basic Research (project no. 15-31-20035).

References

New construction of Deza graphs

Sergey V. Goryainov
Chelyabinsk State University, Chelyabinsk, Russia
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
44g@mail.ru

This is joint work with Alexander Gavrilyuk, Galina Isakova and Leonid Shalaginov

A graph is called regular of valency k, if each of its vertices has exactly k neighbours. A graph is called a Deza graph with parameters (n, k, b, a), $b \geq a$, if it has n vertices, is regular of valency k, and the number of common neighbours of any two of its vertices belongs to the set $\{a, b\}$. A Deza graph is called a strictly Deza graph, if it has diameter 2 and is not strongly regular.

Let G be a finite group. Let S be a non-empty subset of G such that $1_G \notin S$ and, for any $s \in S$, one also has that $s^{-1} \in S$. A graph $Cay(G, S)$ with the vertex set G and the adjacency defined by $x \sim y \iff xy^{-1} \in S$, $\forall x, y \in G$, is called a Cayley graph of the group G with generating set S.

Recall that the Paley graph of order q, where $q \equiv 1(\text{mod } 4)$, is a Cayley graph $Cay(F_q^+, S_q)$, which is strongly regular with parameters $(n, k, \lambda, \mu) = (q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4})$. Here F_q^+ and S_q are the additive group and the set of non-zero squares of the finite field F_q of order q, respectively.

Let q_1, q_2 be two odd prime powers such that $q_2 - q_1 = 4$. Let $S_{q_1} := F_{q_1}^+ \setminus S_{q_1}$ and $S_{q_2} := F_{q_2}^+ \setminus S_{q_2}$ be the sets of non-squares in the corresponding fields. Let $S_0 := \{(0, x) \mid x \in F_{q_2}^+\}$, $S_1 := S_{q_1} \times S_{q_2}$ and $S_2 := S_{q_1} \times S_{q_2}$. In this talk we will discuss the following theorem and some related results.

Theorem. The graph $Cay(F_{q_1}^+ \times F_{q_2}^+, S_0 \cup S_1 \cup S_2)$ is a strictly Deza graph with parameters $(v, v+3, v+7, v+3)$, where $v = q_1 q_2$.

The reported study was funded by RFBR according to the research project No. 16-31-00316.
On vertex connectivity of Deza graphs

Sergey V. Goryainov
Chelyabinsk State University, Chelyabinsk, Russia
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
44g@mail.ru

This is joint work with Dmitry Panasenko

We consider finite undirected graphs without loops and multiple edges. A graph is called regular of valency \(k \), if each of its vertices has exactly \(k \) neighbours. A graph is called a Deza graph with parameters \((n, k, b, a)\), \(b \geq a \), if it has \(n \) vertices, is regular of valency \(k \), and the number of common neighbours of any two of its vertices belongs to the set \(\{a, b\} \). A Deza graph is called a strictly Deza graph, if it has diameter 2 and is not strongly regular. The vertex connectivity \(\kappa(\Gamma) \) of a connected graph \(\Gamma \) is the minimum number of vertices one has to remove in order to make the graph \(\Gamma \) disconnected (or empty).

Vertex connectivity of strictly Deza graphs obtained from the construction [3, theorem 3.1] based on strongly regular graphs was studied in [3]. The case of the eigenvalue \(r \leq 2 \) remained open.

In this work we study the vertex connectivity of strictly Deza graphs obtained from strongly regular graphs with eigenvalue \(r = 1 \) (i.e. from complements to Seidel strongly regular graphs). Note that the construction [3, theorem 3.1] requires the existence of involutive automorphism of a strongly regular graph which interchanges the only non-adjacent vertices. Such automorphisms in the case of the complements to the triangular and lattice graphs have been studied in [2].

In this work the following results were obtained:

Theorem 1. Let \(\Delta \) be a strictly Deza graph obtained from either the complement to the triangular graph \(T(n) \), \(n \geq 3 \), or from the complement to one of the following sporadic graphs: Petersen graph, Shrikhande graph, Clebsch graph, Schlafli graph, Chang graph. Then the vertex connectivity of \(\Delta \) is equal to \(k \), where \(k \) is the valency of the graph \(\Delta \).

Theorem 2. Let \(\Delta \) be a Deza graph obtained from the complement to \(n \times n \)-lattice. Then the vertex connectivity of \(\Delta \) is equal to \(k - 1 \), where \(k \) is the valency of the graph \(\Delta \).

Note that in the case of the complement to \(n \times n \)-lattice, where \(n \) is even, and the automorphism which interchanges \(n/2 \) pairs of rows the construction [3, theorem 3.1] gives vertex-transitive (moreover, Cayley) strictly Deza graphs.

The reported study was funded by RFBR according to the research project No. 16-31-00316.

References

Hom complex of Mapping cylinders of graphs

Shuchita Goyal

Department of Mathematics, Indian Institute of Technology Bombay, India
shuchita@iitb.ac.in

This is joint work with Rekha Santhanam

Let \(\mathcal{G} \) denote the category whose objects are undirected graphs without multiple edges and morphisms are graph homomorphisms. We will define the notion of double mapping cylinder in the category \(\mathcal{G} \). Let \(\mathcal{G}' \) be subcategory of \(\mathcal{G} \), whose objects do not contain \(P_3 \) as an induced subgraph. We will show that the Hom complex functor \(\text{Hom}(T, __ _) \) which was defined by Lovász maps double mapping cylinders in graphs to homotopy pushouts in topological spaces where \(T \) is a graph in \(\mathcal{G}' \).

References

A construction of infinite families of directed strongly regular graphs

Štefan Gyürki
Matej Bel University, Banká Bystrica, Slovakia
stefan.gyurki@umb.sk

The main subject of this talk is directed strongly regular graph, a possible generalization of the well-known (undirected) strongly regular graphs for the directed case, introduced by Duval in [1]. A directed strongly regular graph (DSRG) with parameters \((n, k, t, \lambda, \mu)\) is a regular directed graph on \(n\) vertices with valency \(k\) such that every vertex is incident with \(t\) undirected edges; the number of directed paths of length 2 directed from a vertex \(x\) to another vertex \(y\) is \(\lambda\) if there is an arc from \(x\) to \(y\); and \(\mu\) otherwise.

Using structural analysis of DSRGs we observed that a significant amount of them can be obtained from smaller DSRGs with the aid of suitably defined graph product (\(\pi\)-join) which is based on a partition of the vertex set of the smaller graph. Inspired by this observation we derived the necessary and sufficient conditions to solve, when a homogeneous partition \(\pi\) of a DSRG altogether with \(\pi\)-join construction lead to a bigger DSRG. In fact, the partition \(\pi\) has to be equitable with a prescribed quotient matrix depending just on the parameters of the small DSRG. Using this approach we constructed dozens of infinite families of DSRGs. According to the catalogue of parameter sets with order at most 110, located on the webpage of A. Brouwer and S. Hobart (see [2]), we confirm the existence of DSRGs for 29 open parameter sets.

References

Some simple groups which are determined by their character degree graphs

Somayeh Heydari

Department of pure Mathematics, Faculty of Mathematical Sciences, Shahre-kord University, Shahre-kord, Iran
s.heydari.math@gmail.com

This is joint work with Neda Ahanjideh

Let G be a finite group and let $\rho(G)$ be the set of prime divisors of the irreducible character degrees of G. The character degree graph of G, denoted by $\Delta(G)$, is a graph with vertex set $\rho(G)$ and two vertices a and b are incident in $\Delta(G)$, if ab divides some irreducible character degree of G. Many researchers try to know the properties of $\Delta(G)$. For example, in [2] and [3], it was shown that for every group G, diameter of $\Delta(G)$ is at most 3. Also, authors in [3] showed that if G is a finite simple group, then $\Delta(G)$ is connected unless $G \cong PSL(2,q)$. There are many characterizations of finite groups. In [1], Khosravi and et al. introduced a new characterization of finite groups based on the character degree graph as if G has the same order and the character degree graph as that of a certain group M, then $G \cong M$. Khosravi and et al., in [1], proved that the groups of orders less than 6000 are uniquely determined by their character degree graphs and orders. In this talk, we are going to show that some simple groups are uniquely determined by their orders and character degree graphs.

References

The four color theorem and Thompson’s F

Yuhei Inoue

Tohoku university, Japan

inoue@ims.is.tohoku.ac.jp

The four color theorem is known as a theorem whose proof is very long. Bowlin and Brin tried to obtain a shorter proof of the theorem using binary trees, associahedron and an infinite group known as Thompson’s F in 2013 [1]. The n-dimensional associahedron is a graph composed by binary trees having $n-2$ leaves. They proved that, if for any pair of vertices D and R in the associahedron, there is a good path called a “valid path” from D to R, then the four color theorem follows. We consider the distance in the n-dimensional associahedron, and proved that for any pair of vertices D and R in the n-dimensional associahedron which have distance n, exists a valid path from D to R. In addition, we found a family $\{G_{n-2,k} | 0 \leq k \leq n-2\}$ of vertices in the n-dimensional associahedron such that for every vertex D there is a valid path from D to $G_{n-2,k}$ for some k under a certain assumption. In this talk, we will introduce the relationship between the four color theorem and Thompson’s F, and our results.

References

Maximum skew energy of tournaments

Keiji Ito
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
k.i.to@ims.is.tohoku.ac.jp

We will consider maximum skew energy of tournaments. For a digraph \(D \), the skew-adjacency matrix \(S(D) \) of \(D \) is defined as \(S(D) = A(D) - A(D)^T \), where \(A(D) \) is the \(\{0, 1\} \)-adjacency matrix of \(D \) and skew energy \(\varepsilon(D) \) is defined as the sum of absolute values of eigenvalues of \(S(D) \). A digraph \(D = (V, E) \) is called a tournament if either \((x, y) \in E\) or \((y, x) \in E\) holds for any pair of \(x, y \in V \) \((x \neq y)\).

For any digraph \(D \) with \(n \) vertices, \(\varepsilon(D) \leq n \sqrt{n-1} \) holds \[1\]. Equality holds if and only if \(S(D) \) is a skew symmetric conference matrix. This means that if there exists a digraph \(D \) which attains the upper bound, then \(n \) is a multiple of 4. Otherwise, we can improve this upper bound. For odd \(n \) and any digraph \(D \) with \(n \) vertices, \(\varepsilon(D) \leq (n-1) \sqrt{n} \) holds. Equality holds if and only if \(D \) is a doubly regular tournament. Since \(n \equiv 3 \pmod{4} \) holds if there exist doubly regular tournaments with \(n \) vertices \[3\], there never exists a digraph \(D \) which attains the upper bound if \(n \equiv 1 \pmod{4} \). In both of these upper bounds, tournaments gives the maximum skew energy.

We give the upper bound of skew energy of tournaments with \(n \) vertices for \(n \equiv 2 \pmod{4} \) by using \(\alpha \)-skew energy, which is the sum of the \(\alpha \)-th power of the absolute values of the eigenvalues of a skew-adjacency matrix. For \(n \equiv 2 \pmod{4} \) and any tournament \(T \), \(\varepsilon(T) \leq 2 \sqrt{2n-3} + (n-2) \sqrt{n-3} \) holds.

References

On the computational complexity of Roman domination parameters in graph

Nader Jafari Rad
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
n.jafarirad@gmail.com

A Roman dominating function (or just RDF) on a graph $G = (V, E)$ is a function $f : V \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of an RDF f is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. An RDF f can be represented as $f = (V_0, V_1, V_2)$, where $V_i = \{v \in V : f(v) = i\}$ for $i = 0, 1, 2$. The Roman domination number, $\gamma_R(G)$, of G is the minimum weight of an RDF on G. Several parameters related to the Roman dominating functions have been considered in the very recent years, for example, Roman bondage number, Roman reinforcement number, total Roman domination number, multiple Roman domination number, paired Roman domination number, and etc. We first establish several bounds for the Roman domination number of a graph under some given properties of the graph. We then determine the computational complexity of several Roman domination parameters, and show that the decision problem for these parameters are NP-complete even when restricted to bipartite graphs or chordal graphs. We also study Roman domination parameters in Random graphs.
On the automorphism group of cubic polyhedra

Maryam Jalali-Rad

Department of Pure Mathematics, Faculty of Mathematical Sciences,
University of Kashan, Kashan, Iran
jalali6834@srttu.edu

This is joint work with Modjtaba Ghorbani

By using method of graph theory, we can construct cubic graphs whose faces are squares, pentagons and hexagons. We call sometimes these graphs as fullerene graphs, see [1, 2]. In general, a fullerene, is a cubic three connected graph whose faces entirely composed of triangles, squares, pentagons and hexagons. There are many problems concerning with fullerene graphs and many properties of them are studied by mathematician. Given a triple \(t = (p_3, p_4, p_5) \), we denote by \(p_t \) the class of 3-valent polyhedral graph having \(p_3 \) triangular, \(p_4 \) quadrilateral, \(p_5 \) pentagonal and \(h \) hexagonal faces, and no other faces. The number of vertices of a polyhedron belonging to the class \(p_t \) is \(n = 2p_3 + 2p_4 + 2p_5 + 2h - 4 \). In chemical applications it is often important to make the distinction between the symmetry of the polyhedron as a combinatorial object and the physical symmetry of its realization as an affine object in 3D space.

In general, a \((4,5,6)\) - polyhedron is a cubic planar graph whose faces are squares, pentagons and hexagons. A \((3,5,6)\) - polyhedron is a cubic planar graph whose faces are triangles, pentagons and hexagons. In this paper, by using the methods of [3], we compute the symmetry group of both \((3,5,6)\) and \((4,5,6)\) polyhedrons.

References

By “graph” we mean “an undirected graph without loops and multiple edges”. A graph Γ on v vertices is strongly regular with parameters (v, k, λ, μ) if it is regular of degree k, the number of common neighbors of two adjacent vertices is equal to λ and the number of common neighbors of two non-adjacent vertices is equal to μ (see, for example, [1]). A graph Γ on v vertices is a Deza graph with parameters (v, k, b, a), where $v > k \geq b \geq a \geq 0$, if it is regular of degree k and the number of common neighbors of two distinct vertices takes on one of two values a or b, not necessarily depending on the adjacency of the two vertices (see [2]). A strictly Deza graph is a Deza graph which is not strongly regular and has diameter 2.

Let Γ be a strongly regular graph with parameters (v, k, λ, μ). It’s not difficult to see, that

1. if $\mu = k$ then Γ is a complete multipartite graph;
2. if $\mu = k - 1$ then Γ is the pentagon;
3. if $\lambda = k - 1$ then Γ is an union of cliques.

Let Γ_1 and Γ_2 be graphs. Γ_2-extension of Γ_1 is a graph obtained by replacing vertices of Γ_1 by copies of Γ_2 and joining all edges between vertices from distinct copies of Γ_2 whenever the correspondent vertices of Γ_1 were adjacent.

In [2] it was obtained a result analogue to (1) for Deza graphs. It was proved, Γ is a strictly Deza graph with parameters (n, k, k, a) if and only if Γ is isomorphic to n_2-co clique extension of a strongly regular graph Γ_1 with parameters (n_1, k_1, λ, μ) for some n_1, k_1, λ, μ and n_2, where $\lambda = \mu$ and $n_2 \geq 2$.

Our aim is to obtain results analogue to (2) and (3) for Deza graphs. We prove the following theorem.

Theorem. A graph Γ is a strictly Deza graph with parameters $(v, k, k-1, a)$ if and only if Γ is isomorphic to 2-co clique extension either of a complete multipartite graph or of a strongly regular graph with parameters \(\left(\frac{n}{2}, \frac{k-1}{2}, \frac{a-2}{2}, \frac{a}{2}\right)\).

Acknowledgment. The work is supported by RFBR (grant no. 16-31-00316). The first co-author is supported by the grant of the President of Russian Federation for young scientists (grant no. MK-6118.2016.1) and is a winner of the competition for young mathematicians of the Dmitry Zimin Foundation “Dynasty” in 2013 year.

References

Multiplicities of eigenvalues of the Star graph

Ekaterina N. Khomyakova
Novosibirsk State University, Novosibirsk, Russia
ekhomnsu@gmail.com

This is joint work with Sergey V. Avgustinovich and Elena V. Konstantinova

The objects of our research are spectra of Star graphs. The Star graph S_n is the Cayley graph on the symmetric group Sym_n generated by the set of transpositions $\{(1\ 2), (1\ 3), \ldots, (1\ n)\}$. In 2009 A. Abdollahi and E. Vatandoost conjectured [1] that the spectrum of S_n is integral, moreover it contains all integers in the range from $-(n-1)$ up to $n-1$ (with the sole exception that when $n \leq 3$, zero is not an eigenvalue of S_n). In 2012 R. Krakovski and B. Mohar [3] proved that the spectrum of S_n is integral, more precisely, they showed that for $n \geq 2$ and for each integer $1 \leq k \leq n$ the values $\pm(n-k)$ are eigenvalues of the Star graph S_n. They also gave a lower bound on multiplicities of eigenvalues of S_n. At the same time, G. Chapuy and V. Feray [2] showed another approach to obtain the exact values of multiplicities of eigenvalues of S_n. Their combinatorial approach is based on the Jucys-Murphy elements and the standard Young tableaux. In 2015 this approach was used to obtain the multiplicities of eigenvalues of S_n for $n \leq 10$ [3].

In this talk we present analytic formulas to calculate multiplicities of eigenvalues of the Star graph.

Theorem 1. Let $n \geq 2$ and for each integer $1 \leq k \leq n$ the values $\pm(n-k)$ are eigenvalues of the Star graph S_n. The multiplicities $\text{mul}(n-k)$ for $k = 2, 3, 4, 5$ of eigenvalues of S_n are given by the following formulas:

\[
\text{mul}(n-2) = (n-1)(n-2), \quad n \geq 3; \\
\text{mul}(n-3) = \frac{(n-3)(n-1)}{2}(n^2 - 4n + 2), \quad n \geq 4; \\
\text{mul}(n-4) = \frac{(n-2)(n-1)}{6}(n^4 - 12n^3 + 47n^2 - 62n + 12), \quad n \geq 4; \\
\text{mul}(n-5) = \frac{(n-2)(n-1)}{24}(n^6 - 21n^5 + 169n^4 - 647n^3 + 1174n^2 - 820n + 60), \quad n \geq 5.
\]

The following theorem gives an improved lower bound on multiplicity $\text{mul}(t)$ of eigenvalues $t := n - k$ of the Star graph which were obtained using the standard Young tableaux.

Theorem 2. In the Star graph S_n for sufficiently large n and for a fixed t the multiplicity $\text{mul}(t)$ of eigenvalue t is at least $2^{\frac{1}{2}n \log n(1-o(1))}$.

Thus, for any eigenvalue t of S_n the order of logarithm of multiplicities $\text{mul}(t)$ is the same that $n!$.

The work has been supported by RFBS Grant 15-01-05867.

References

Computational complexity of Vertex Cover and related problems for highly connected triangulations

Konstantin S. Kobylikin

Ural Federal University, Yekaterinburg, Russia
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
kobylikinks@gmail.com

Computational complexity is studied for the Vertex Cover problem (VC) over classes of highly connected plane graphs based on Euclidean distances between their vertices (proximity graphs). Among those graphs are Delaunay triangulations and their special forms, namely half-θ_6 graphs. Study of their graph-theoretic properties received focus in the literature (Dillencourt et al., 1996, Bose et al. 2012, Biniaz et al., 2015). Our motivation lies in the field of network security applications as Delaunay triangulations and their relatives represent convenient network topologies which admit efficient local routing (Bose et al. 2014). More specifically VC can be considered as a problem of optimal guarding of a network where one needs to locate positions of sensors (i.e. guards) at the network nodes such that each network link is within the scope of some sensor. Being of interest VC complexity over classes of Delaunay triangulations and their relatives did not get much attention in the literature. In this work we claim VC strong NP-hardness over the class of 4-connected half-θ_6 graphs.

Planar graph is referred to as planar triangulation when all faces for some its plane embedding (except for possibly outer face) are triangles. Our approach to study the VC complexity for proximity graphs involves two stages. In the first one problem complexity is studied over specific classes of planar triangulations not taking into account their underlying geometric structure; in the second stage some result from graph drawing is applied that embeds graphs from these classes as Delaunay or half-θ_6 graphs.

It is known that VC is polynomially solvable over classes of outerplanar graphs (Bodlaender, 1998) including outerplanar (always Delaunay realizable due to Dillencourt, 1990) triangulations. Polynomial solvability of VC also holds true over chordal graphs (Gavril, 1972) which become triangulations when they are 3-connected and planar. More general result is known on VC polynomial solvability over class of planar graphs of bounded chordality (Kaminski, 2009). Let us observe that only a few instances of outerplanar and 3-connected planar chordal graphs are in fact 4-connected. The 3-connectivity also requires from instances of the class of planar triangulations whose chordality does not exceed k to have outer facial cycle of length not exceeding k. In our work we claim strong NP-hardness of VC over the class of 4-connected planar triangulations. Considering highly connected instances of triangulations is motivated by the fact that 4-connected (i.e. Hamiltonian) ones are graph isomorphic to Delaunay triangulations (Dillencourt, 1990). Since the proof of this isomorphism is not constructive we get weaker result on the NP-hardness of VC for 4-connected half-θ_6 graphs i.e. Delaunay triangulations build under another metric.

This work was supported by Russian Science Foundation, project 14-11-00109.
Finite groups whose prime graphs do not contain triangles

Anatoly S. Kondrat’ev
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
a.s.kondratiev@imm.uran.ru

This is joint work with O. A. Alekseeva

The prime graph (or the Gruenberg-Kegel graph) $\Gamma(G)$ of a finite group G is a graph, in which the vertices are prime divisors of $|G|$, and two distinct vertices p and q are adjacent if and only if G contains an element of order pq.

Lucido [1] described finite simple groups G such that the connected components of the graph $\Gamma(G)$ are trees, i.e. connected graphs without cycles. Furthermore, in this paper Lucido described the structure of a finite group whose prime graph is a tree. We consider more general problem of the description of the structure of a finite group whose prime graph contains no triangles (3-cycles).

In the talk we discuss both the recent published in [2,3] and some new our results on this problem.

The work is supported by the Russian Science Foundation (project no. 15-11-10025).

References

Automorphism Group of the Local Fusion Graph of a Finite Group

Fatemeh Koorepazan–Moftakhar

Department of Pure Mathematics, University of Kashan, Kashan, Iran
f.k.moftakhar@gmail.com

This is joint work with A. R. Ashrafi

Given a finite group G and a conjugacy class X of involutions in G, the local fusion graph $F(G, X)$ has vertex set X and two distinct involutions in X are joined by an edge if their product has odd order. The aim of this paper is to study the automorphism group of the local fusion graphs of dihedral, semidihedral, dicyclic, the group $U_{2mn} \cong Z_m \rtimes Z_{2n}$ and $V_{8n} = \langle a, b \mid a^{2n} = b^4 = e, aba = b^{-1}, ab^{-1}a = b \rangle$.

Some open questions are also presented.

References

The structure of Hentzel–Rúa semifield of order 64

Olga Kravtsova
Siberian Federal University, Krasnoyarsk, Russia
ol71@bk.ru

In 1991 G.P. Wene [1] has noted the hypothesis: any finite semifield D is right or left primitive, i.e. every element of the loop D^* is a set of right- or left-ordered powers of an element in a semifield D. In 2004 I. Rúa [2] has indicated a counter-example to Wene's conjecture, using Knuth's semifield of order 32. The second counter-example is a Hentzel–Rúa semifield of order 64 [3], which has been constructed in 2007. The Hentzel–Rúa semifield is the unique semifield of order 64 which is neither left nor right primitive.

We investigate the structure of counter-example Hentzel–Rúa semifield and prove the conjecture that its loop is one-generated (weaker than Wene conjecture).

Lemma 1. The automorphism group of Hentzel–Rúa semifield \mathcal{H} is isomorphic to the symmetric group S_3 and hence has exactly three involution automorphisms.

Lemma 2. The semifield \mathcal{H} contains exactly six maximal subfields: 5 subfields of order 8, three from them are stabilizers of different involution automorphisms; the unique subfield of order 4, which is a stabilizer of automorphism of order 3.

Lemma 3. The spectrum of the loop \mathcal{H}^* is $\{1, 3, 5, 6, 7\}$. The left and right spectra coincide with $\{1, 3, 6, 7, 12, 15\}$.

Lemma 4. For any $n \geq 10$ the loop \mathcal{H}^* is an union of all n-th degrees of any element not from maximal subfields, so \mathcal{H}^* is one-generated.

The author was funded by RFBR (project 16-01-00707).

References

Strongly regular graphs with the same parameters as the symplectic graph

Sho Kubota
Tohoku University, Japan
kubota@ims.is.tohoku.ac.jp

We consider orbit partitions of groups of automorphisms for the symplectic graph and apply Godsil-McKay switching. As a result, we find four families of strongly regular graphs with the same parameters as the symplectic graphs, including the one discovered by Abiad and Haemers. Also, we prove that switched graphs are non-isomorphic to each other by considering the number of common neighbors of three vertices.

References

Induction principle in perfect colorings theory

Maria Lisitsyna
Budyonnny Military Academy of Telecommunications, St.Petersburg, Russia
lisicinama@ngs.ru

Let k be a positive integer. A k-coloring of vertices of a graph $G = (V, E)$ is a map $f : V \rightarrow \{1, \ldots, k\}$. If $f(v) = s$ for some vertex v, then s is the color of v. A k-coloring of the vertices of a graph is called perfect if the multiset of colors of all neighbors of a vertex depends only on its own color. The induction principle is an efficient approach, that can be used for studying perfect colorings of bipartite graphs.

Consider a bipartite graph $G(V_1, V_2)$. A half-coloring of the graph G is a coloring of vertices of the set V_i. A half-coloring is called feasible, if it is a part of some perfect coloring of the graph G. Two feasible half-colorings are called matched, if they complement each other to the perfect coloring of the whole graph.

Let $f_1 : V_1 \rightarrow \{1, \ldots, k\}$ be an arbitrary coloring of vertices from the set V_1. Induction operation carries on half-coloring f_1 to coloring of the whole graph in the following way: vertices of the set V_2 with the same multiset of neighborhood colors are assigned the same color not from the set $\{1, \ldots, k\}$.

The following lemma holds:

Lemma 1. A half-coloring of any bipartite graph G is feasible if and only if the corresponding induced coloring is perfect.

A bipartite coloring is a perfect coloring of the graph G, if the color sets of the corresponding half-colorings do not intersect. Otherwise the perfect coloring of the graph G is called nonbipartite. Note, that color sets of half-colorings coincide in nonbipartite case, if G is connected.

The following concept is proposed to obtain the description of all perfect colorings for the graph G:

1. to obtain the complete description of feasible half-colorings of graph G using Lemma 1;
2. to construct all matched complements for each feasible half-coloring in bipartite and nonbipartite cases.

Let us call the concept described above an induction principle.

Authors [1] used the induction principle to obtain the complete description of perfect colorings for the infinite prism graph. It’s easy to adapt results obtained in [1] to finite case - finite prism graphs and Mobius ladders.

References

Symmetries on Euclidean plane and mechanics

Alexander Lozhkin
M.T. Kalashnikov Izhevsk State Technical University, Izhevsk, Russia
lag@istu.ru

This is joint work with Pavol Božek and Maria Tothova

The new branches of geometry appear with transferring the results of other mathematical sections, such as set theory, algebra, etc. generally. Hilbert suggested to consider the linguistic rules in addition to the axioms \mathbb{R}^2. In the present study hypothesis extended to the plane itself, which is proposed as text. Levels of study of the text are its internal relations. As basic postulates were used: permutation, mirror and with unitary matrix symmetries by Dieudonne, table automorphisms and transfer symmetry by H. Weyl, definition of symmetry by M. Born, binary automorphisms by F. Bachman.

Extended table of Dieudonne symmetries was built on the base of relational algebra and semiotic analyze:

1. Existing of set ($A \neq \emptyset$ Zermelo).
2. Existing of relation ($a_1 R a_2$ Codd).
3. Membership element of set ($a \in A$ Fraenkel).
4. Universal relation ($f : \Omega \rightarrow \Omega'$ implication).
5. Linguistic description of the set (Descartes).
7. Saving cardinality ($m(A) = \text{const}$ Lagrange).
8. Saving power relations ($n = \text{const}$ in $C_1x^n + C_2y^n + C_3x^{n-1}y^{n-1} + \ldots + C_{k-1}x + C_ky + C_0$ Klein).
9. Linguistic order ($\vec{v} = xi + yj + zk + w$ Hamilton).
10. Mathematical order ($a_i \prec a_{i+1}$, where $a_i, a_{i+1} \in \mathbb{R}$ Kantor).
11. Permutation ($a_i \leftrightarrow a_j$).
12. Mirror ($a_i \times -1 = -a_i$).

Symmetries are joined the set theory and universal algebra, so there are two methods for solving the characteristic equation $T \vec{v} = \lambda \vec{v}$ are exist.

The Jordan curves are the basis for many of the kinematic mechanisms. An exactitude of mechanism causes the trajectory of its motion [2]. The solution of differential equations can be obtained in an analytical form if the trajectory is given of the exact analytical formula. Experiments have shown a difference between the theoretical and actual trajectory less than 5%.

Acknowledgments. The contribution is sponsored by VEGA MŠ SR No 1/0367/15 prepared project "Research and development of a new autonomous system for checking a trajectory of a robot" and project KEGA MŠ SR No 006STU-4/2015 prepared project "University textbook "The means of automated production" by interactive multimedia format for STU Bratislava and Košice". Supported by Minobrnauki of Russian Federation, Grant GZ/TVG 14(01.10).

References

Hamiltonian Cycles in Directed Toeplitz Graphs

Shabnam Malik

Department of Mathematics, Forman Christian College (a Chartered University), Lahore, Pakistan
shabnam.malik@gmail.com

An $n \times n$ matrix $A = (a_{ij})$ is called a Toeplitz matrix if it has constant values along all diagonals parallel to the main diagonal. A directed Toeplitz graph is a digraph with Toeplitz adjacency matrix. In this talk I will discuss conditions for the existence of hamiltonian cycles in directed Toeplitz graphs.

Notation: The main diagonal of an $n \times n$ Toeplitz adjacency matrix will be labeled 0 and it contains only zeros. The $n - 1$ distinct diagonals above the main diagonal will be labeled $1, 2, \ldots, n - 1$ and those under the main diagonal will also be labeled $1, 2, \ldots, n - 1$. Let s_1, s_2, \ldots, s_k be the upper diagonals containing ones and t_1, t_2, \ldots, t_l be the lower diagonals containing ones, such that $0 < s_1 < s_2 < \cdots < n$ and $0 < t_1 < t_2 < \cdots < n$. Then, the corresponding Toeplitz graph will be denoted by $T_{n < s_1, s_2, \ldots, s_k; t_1, t_2, \ldots, t_l}$. That is $T_{n < s_1, s_2, \ldots, s_k; t_1, t_2, \ldots, t_l}$ is the graph with vertices $1, 2, \ldots, n$ in which the edge (i, j) occurs if and only if $j - i = s_p$ or $i - j = t_q$ for some p and q ($1 \leq p \leq k, 1 \leq q \leq l$).
On the realizability of a finite graph whose complement is triangle-free as the Gruenberg–Kegel graph of a finite group

Natalia V. Maslova

Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
Uralf Federal University, Yekaterinburg, Russia

butterson@mail.ru

This is joint work with I. B. Gorshkov

By “group” we mean “a finite group” and by “graph” “an undirected graph without loops and multiple edges”. Let G be a group. Denote by $\pi(G)$ the set of all prime divisors of the order of G and by $\omega(G)$ the spectrum of G, i.e. the set of all its element orders. The set $\omega(G)$ defines the Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ of G; in this graph the vertex set is $\pi(G)$ and distinct vertices p and q are adjacent if and only if $pq \in \omega(G)$.

We say that a graph Γ with $|\pi(G)|$ vertices is realizable as the Gruenberg–Kegel graph of a group G if there exists a labeling of the vertices of Γ by distinct primes from $\pi(G)$ such that the labeled graph is equal to $\Gamma(G)$. In [1] it was proved, a graph is realizable as the Gruenberg–Kegel graph of a solvable group if and only if its complement is 3-colorable and triangle free. In [2] it was proved, the Gruenberg–Kegel graph of an almost simple group is isomorphic to the Gruenberg–Kegel graph of an appropriate solvable group if and only if its complement is triangle free. The following question arises.

Question. Is there a graph without 3-cliques, whose complement is not 3-colorable, but which is isomorphic to the Gruenberg–Kegel graph of an appropriate non-solvable group? In the other words, is there a graph which is realizable as the Gruenberg–Kegel graph of an appropriate non-solvable group, but is not realizable as the Gruenberg–Kegel graph of any solvable group?

The Grotzsch graph is the smallest example of triangle-free graph which is not 3-colorable (see Fig. 1).

![Grotzsch graph](image)

Fig. 1: Grotzsch graph

We prove the following theorem.

Theorem. The complement of the Grotzsch graph is not realizable as the Gruenberg–Kegel graph of a group.

Acknowledgment. The work is supported by the grant of the President of Russian Federation for young scientists (grant no. MK-6118.2016.1), by the Integrated Program for Fundamental Research of the Ural Branch of the Russian Academy of Sciences (project no. 15-16-1-5), by the Program of the State support of leading universities of the Russia (agreement no. 02.A03.21.0006 of 27.08.2013). The author is a winner of the competition for young mathematicians of the Dmitry Zimin Foundation “Dynasty” in 2013 year.

References

New infinite family of Cameron-Liebler line classes

Ilya Matkin
Chelyabinsk State University, Chelyabinsk, Russia
ilya.matkin@gmail.com

This is joint work with Alexander Gavrilyuk and Tim Penttila

Let $\text{PG}(3,q)$ denote the 3-dimensional projective space over the finite field F_q. A Cameron-Liebler line class of $\text{PG}(3,q)$ is a set of lines that shares a constant number x of lines with every spread of $\text{PG}(3,q)$. The number x is called the parameter of the Cameron-Liebler line class. It can be seen from the definition that the complementary set to a Cameron-Liebler line class is a Cameron-Liebler line class with parameter $q^2 + 1 - x$, so that we may assume $x \leq (q^2 + 1)/2$.

The examples of Cameron-Liebler line classes include an empty set of lines ($x = 0$), the set of all lines in a plane ($x = 1$) or, dually, through a point ($x = 1$), and the union of the previous two examples with $x = 2$, assuming that the point is not in the plane ($x = 2$). Cameron-Liebler line classes first appeared in the study [1] (see also [8]) on collineation groups of $\text{PG}(n,q)$, $n \geq 3$, that have equally many orbits on lines and on points. For more comprehensive background, we refer to recent papers [3–6].

It was conjectured in [1] that the only Cameron-Liebler line classes are the examples mentioned above, i.e., $x \leq 2$. The first counterexample was found by Drudge in $\text{PG}(3,3)$ with $x = 5$, which was generalised later by Bruen and Drudge [2] to an infinite family having parameter $x = (q^2 + 1)/2$ for all odd q. With the aid of computer Rodgers [7] constructed many more new examples for certain x and prime powers q. Some of them have been shown in [3], [6] to be a part of a new infinite family of Cameron-Liebler line classes with parameter $x = (q^2 + 1)/2$ for $q \equiv 5$ or 9 (mod 12).

In this work, we construct one more infinite family of Cameron-Liebler line classes in $\text{PG}(3,q)$ with parameter $x = (q^2 + 1)/2$ for all odd q, which are somehow related to the line classes of Bruen and Drudge, but not equivalent to them. In particular, for $q = 5$, there exist at least 3 pairwise non-equivalent Cameron-Liebler line classes with $x = (q^2 + 1)/2 = 13$.

References

Circulant graphs and Jacobians

Ilya Mednykh

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
ilyamednykh@mail.ru

We consider Jacobians of graphs as discrete analogues of Jacobians of Riemann surfaces. More precisely, Jacobian of graph is an Abelian group generated by flows satisfying the first and the second Kirchhoff rules. We define a circulant graph as the Cayley graph of a cyclic group. The family of circulant graphs is quite wide. It includes complete graphs, cyclic graphs, antiprism graphs, even prism graphs and Moebius ladder graph. We propose a new method to find the structure of Jacobians for a large subfamily of circulant graphs.
On 3-generated lattices with standard and dual standard elements among generators

Nikolai A. Minigulov
Unl Federal University, Yekaterinburg, Russia
nikolai-minigulov@mail.ru

In [1] a 3-generated lattice is proved to be distributive if two of its generators are standard. It means that such lattice has at most 18 elements. Obviously the same result is true if there are two dual standard generators. We consider 3-generated lattices when one generator is standard and another generator is dual standard.

Theorem. Let L be a 3-generated lattice. If one of generator of L is standard and another generator is dual standard then L contains at most 21 elements.

It should be noted that the estimate in Theorem is sharp.

References

On lattices with a neutral pair of elements among generators

Nikolai A. Minigulov

Ural Federal University, Yekaterinburg, Russia
nikola-minigulov@mail.ru

This is joint work with A. G. Gein

Studying the structure of a lattice often relies on distinguishing elements with certain good properties, for instance, distributive, standard, or neutral elements of the lattice. For example, a pair of elements a and b is called distributive in a lattice L if $c \land (a \lor b) = (c \land a) \lor (c \land b)$ for any element c [1].

We call a pair of elements a and b is called neutral in a lattice L if $(x \lor a) \land (x \lor b) \land (a \lor b) = (x \land a) \lor (x \land b) \lor (a \land b)$ for any element x.

Theorem. The lattice in Figure is generated by the elements a, b and c and the pair (a, b) is neutral. Conversely, let a lattice be generated by elements a, b and c such that the pair (a, b) is neutral. Then the lattice is a homomorphic image of the lattice in Figure.

The proof of the theorem is based on the main results of the paper [2].

![Figure](image)

References

On claw-free strictly Deza graphs

Anastasiya V. Mityanina
Chelyabinsk State University, Chelyabinsk, Russia
nastya.mityanina@gmail.com

This is joint work with V. V. Kabanov

All graphs under consideration are undirected graphs without loops and multiple edges. Let \(v, k, b, a \) be integers such that \(0 \leq a \leq b \leq k < v \). A graph \(G \) is a Deza graph with parameters \((v,k,b,a) \) if

- \(G \) has exactly \(v \) vertices;
- for any vertex \(u \) in \(G \) its neighbourhood \(N(u) \) has exactly \(k \) vertices;
- for any two distinct vertices \(u, w \) of \(G \) the size of \(N(u) \cap N(w) \) takes on one of two values \(b \) or \(a \).

The key of difference between a strongly regular graph and a Deza graph is that the size of \(N(u) \cap N(w) \) does not necessary depend on adjacency \(u \) and \(w \).

A strictly Deza graph is a Deza graph of diameter 2 that is not strongly regular.

The study of strongly regular graphs has a long history (see for example [1]), and the study of strictly Deza graphs started since the paper written by five authors M. Erickson, S. Fernando, W. H. Haemers, D. Hardy and J. Hemmeter [2] had been published.

A subset of the vertices of a graph is called co clique if there does not exist adjacent vertices. The complete bipartite graph \(K_{m,n} \) is a graph whose set of vertices can be divided into subsets of the cardinalities \(m \) and \(n \) such that each vertex in one subset is adjacent to every vertex in the other subset and to no vertex in its own subset. A claw is another name for the complete bipartite graph \(K_{1,3} \). A claw-free graph is a graph that does not have a claw as an induced subgraph. Claw-free graphs were initially studied as a generalization of line graphs. The line graph of a graph \(G \) is another graph \(L(G) \) that represents the adjacencies between edges of \(G \).

In [1] it was described the class of strictly Deza line graphs. In [2] it was described the class of claw-free strictly Deza graphs which are the union of closed neighborhoods of some two non-adjacent vertices, that is there are some two distinct vertices aren’t belonging to any 3-co clique.

In this work we proved the following theorem.

Theorem. Let \(G \) be a claw-free strictly Deza graph, and any two of its non-adjacent vertices belong to 3-co clique. Then \(G \) is one of that graphs:

1. the \(4 \times n \)-lattice, where \(n > 2 \), \(n \neq 4 \);
2. the 2-extension of \(3 \times 3 \)-lattice;
3. Deza line graph with parameters \((20, 6, 3, 2) \).

References

Propelinear codes from multiplicative group of $GF(2^m)$

Ivan Yu. Mogilnykh
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
ivmog@math.nsc.ru

This is joint work with Faina I. Solov’eva

All necessary definitions and notions can be found in [1]. It is well known that the automorphism group (the isometry group) $\text{Aut}(GF(2^m))$ of the binary vector space $GF(2^m)$ with respect to the Hamming metric is the group of all transformations (x, π) fixing $GF(2^m)$ with respect to the composition $(x, \pi) \cdot (y, \pi') = (x + \pi(y), \pi \circ \pi')$. Given a binary code C the setwise stabilizer of C in $\text{Aut}(GF(2^m))$ is called the automorphism group $\text{Aut}(C)$ of C. The symmetry group $\text{Sym}(C)$ of a code C is defined as $\text{Sym}(C) = \{ \pi \in S_m : \pi(C) = C \}$. A code C is called transitive if there is a subgroup H of $\text{Aut}(C)$ acting transitively on the codewords of C. If we additionally require that for any $x, y \in C$, $x \neq y$ there is a unique element h of H such that $h(x) = y$, then H acting on C is called a regular group [2] and the code C is called propelinear (for the original definition see [4]). In this case the order of H is equal to the size of C. Each regular subgroup $H < \text{Aut}(C)$ naturally induces a group operation on the codewords of C defined in the following way: $x * y := h_2(y)$, such that the codewords of C form a group with respect to the operation $*$, isomorphic to H: $(C, *) \cong H$, which is called propelinear structure on C. The notion of propelinearity is important from both algebraic and combinatorial coding theory point of view since it provides a general view on linear and additive codes. It is obvious that any propelinear code is transitive but not vice versa. Many known good codes are propelinear, for example all Z_2-linear codes, see also [4] and list of references there.

Theorem 1. Let (D, \ast) and (C, \ast) be propelinear structures such that $(D, \ast) \prec (C, \ast)$ and a group G be a subgroup of $\text{Sym}(C) \cap \text{Sym}(D)$ acting regularly on the right cosets from $(C/D) \setminus D$. Then $C \setminus D$ is propelinear.

There are many good (uniformly packed and transitive) codes that have the multiplicative group of $GF(2^m)$ as a subgroup of their symmetry group. Taking this group as G we obtain the examples below. Denote by P the Preparata codes constructed in [6]. Denote by H the cyclic Hamming code with the generator polynomial $m_1(x)$ and a Goethals code by Γ. By H', P' and Γ' denote the known Z_4-linear perfect, Preparata and Goethals codes respectively. These codes form nested families: $H \supset P \supset \Gamma$, $H' \supset P' \supset \Gamma'$.

Theorem 2. Let D be the cyclic code of length n, $n = 2^m$, $m \geq 3$, m is odd, with the generator polynomial $m_1(x)m_{\sigma+1}(x)$, where $((\sigma + 1), (2^m - 1)) = 1$. Then the code $H \setminus D$ is propelinear.

Theorem 3. Let $n = 4^m$, $m \geq 2$. The codes $F_2^n \setminus H$, $H \setminus P$, $P \setminus \Gamma$, $H' \setminus P'$ and $P' \setminus \Gamma'$ of length n are propelinear.

The work is supported by the Russian Science Foundation (grant 14-11-00555).

References

Affine connections on three-dimensional homogeneous spaces

Natalya Mozhey
Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
mozheynatalya@mail.ru

Let \((G, M)\) be a three-dimensional homogeneous space, where \(G\) is a Lie group on the manifold \(M\). We fix an arbitrary point \(o \in M\) and denote by \(G = G_o\) the stationary subgroup of \(o\). It is known that the problem of classification of homogeneous spaces \((G, M)\) is equivalent to the classification (up to equivalence) of pairs of Lie groups \((\bar{G}, G)\) such that \(G \subset \bar{G}\). In the study of homogeneous spaces it is important to consider not the group \(G\) itself, but its image in \(\text{Diff}(M)\). In other words, it is sufficient to consider only effective actions of \(G\) on \(M\). Since we are interested only the local equivalence problem, we can assume without loss of generality that both \(G\) and \(G\) are connected. Then we can correspond the pair \((\bar{g}, g)\) of Lie algebras to \((\bar{G}, G)\), where \(\bar{g}\) is the Lie algebra of \(\bar{G}\) and \(g\) is the subalgebra of \(\bar{g}\) corresponding to the subgroup \(G\). This pair uniquely determines the local structure of \((G, M)\), that is two homogeneous spaces are locally isomorphic if and only if the corresponding pairs of Lie algebras are equivalent. A pair \((\bar{g}, g)\) is effective if \(g\) contains no non-zero ideals of \(\bar{g}\), a homogeneous space \((G, M)\) is locally effective if and only if the corresponding pair of Lie algebras is effective. An isotropic \(g\)-module \(m\) is the \(g\)-module \(\bar{g}/g\) such that \(x(\bar{y} + \bar{g}) = [x, \bar{y}] + \bar{g}\). The corresponding representation \(\lambda\) : \(\bar{g} \rightarrow \text{gl}(m)\) is called an isotropic representation of \((\bar{g}, g)\). The pair \((\bar{g}, g)\) is said to be isotropy-faithful if its isotropic representation is injective. If there exists at least one invariant connection on \((\bar{g}, g)\) then this pair is isotropy-faithful [1].

We divide the solution of the problem of classification all three-dimensional isotopically-faithful pairs \((\bar{g}, g)\) into the following parts. We classify (up to isomorphism) faithful three-dimensional \(g\)-modules \(U\), this is equivalent to classifying all subalgebras of \(\text{gl}(3, \mathbb{R})\) viewed up to conjugation. For each obtained \(g\)-module \(U\) we classify (up to equivalence) all pairs \((\bar{g}, g)\) such that the \(g\)-modules \(\bar{g}/g\) and \(U\) are isomorphic. All of these pairs are described in [2].

Invariant affine connections on \((G, M)\) are in one-to-one correspondence [3] with linear mappings \(\Lambda : \bar{g} \rightarrow \text{gl}(m)\) such that \(\Lambda_{|g} = \lambda\) and \(\Lambda\) is \(g\)-invariant. We call this mappings (invariant) affine connections on the pair \((\bar{g}, g)\). The curvature and torsion tensors of the invariant affine connection \(\Lambda\) are given by the following formulas: \(R : m \wedge m \rightarrow \text{gl}(m)\), \((x_1 + \bar{g}) \wedge (x_2 + \bar{g}) \rightarrow [\Lambda(x_1), \Lambda(x_2)] - \Lambda([x_1, x_2])\); \(T : m \wedge m \rightarrow m\), \((x_1 + \bar{g}) \wedge (x_2 + \bar{g}) \rightarrow \Lambda(x_1)(x_2 + \bar{g}) - \Lambda(x_2)(x_1 + \bar{g}) - [x_1, x_2]_m\).

We restate the theorem of Wang on the holonomy algebra of an invariant connection: the Lie algebra of the holonomy group of the invariant connection defined by \(\Lambda : \bar{g} \rightarrow \text{gl}(3, \mathbb{R})\) on \((\bar{g}, g)\) is given by \(V + [\Lambda(\bar{g}), V] + [\Lambda(\bar{g}), [\Lambda(\bar{g}), V]] + \ldots\), where \(V\) is the subspace spanned by \([[\Lambda(x), \Lambda(y)] - \Lambda([x, y])| x, y \in \bar{g}\}\). We describe all local three-dimensional homogeneous spaces, allowing affine connections, it is equivalent to the description of effective pairs of Lie algebras, and all invariant affine connections on the spaces together with their curvature, torsion tensors and holonomy algebras. We use the algebraic approach for description of connections, methods of the theory of Lie groups, Lie algebras and homogeneous spaces.

References

4-colored graphs and complements of knots and links

Michele Mulazzani
Department of Mathematics, University of Bologna, Bologna, Italy
michele.mulazzani@unibo.it

A representation for compact 3-manifolds with non-empty non-spherical boundary via 4-colored graphs (i.e. regular 4-valent graphs endowed by a proper edge-coloration with four colors) has been introduced in [1], where an initial tabulation/classification of such manifolds has been obtained, up to 8 vertices of the representing graph.

Computer experiments show that the number of graphs/manifolds grows very rapidly with the increasing of the vertices. As a consequence we focused our attentions on the case of 3-manifolds which are the complements of knots or links in the 3-sphere. In this context we obtained the classification of these 3-manifolds, up to 12 vertices of the representing graphs, showing the type of the links involved (they are exactly 21, and among them 16 are prime).

For the particular case of knot complements, the classification has been recently extended up to 16 vertices: there are exactly 2 knot complements, the trivial knot complement (6 vertices) and the trefoil knot complement (16 vertices).

All these results are contained in [2], which will soon appear on the arXiv.

References

A q and q,t-analogue of Hook Immanantal Inequalities and Hadamard Inequality for Trees

Mukesh Kumar Nagar
Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
mukesh.phd@math.iitb.ac.in

This is joint work with Sivaramakrishnan Sivasubramanian

Let T be a tree on n vertices with Laplacian matrix L and q-Laplacian \mathcal{L}_q. Let χ_k be the character of the irreducible representation of the symmetric group \mathfrak{S}_n indexed by the hook partition $k, 1^{n-k}$ and let $d_k(L)$ be the normalized hook immanant of L corresponding to the character χ_k. In [1,3–5], inequalities are known for $d_k(L)$ as k increases. By using matchings and assigning statistics to vertex orientations, we generalize these inequalities to the matrix \mathcal{L}_q, for all $q \in \mathbb{R}$ and to the bivariate q,t-Laplacian $\mathcal{L}_{q,t}$ for a specific set of values q,t, where both $q, t \in \mathbb{R}$ or both $q, t \in \mathbb{C}$. Our statistic based approach also gives generalizations of inequalities given in [2] for a Hadamard inequality changing index $k(L)$ of L, to the matrices \mathcal{L}_q and $\mathcal{L}_{q,t}$ for trees.

References
Some Class of golden graphs and its construction

Swamy Narayan
KLE Technological University, Hubli, Karnataka, India
nswamy@bwb.edu

In this paper, we generated some class of golden graphs (Graphs with eigenvalues as golden ratio). First, we have proved logically that, for which \(n \) (number of vertices), tree \(A_n \) (double headed snake) and Prism \(I_n \) are golden graphs. Next which Mobius ladder are golden graphs and also proved \(C_{5k} + K_1 \) are golden graphs. And also for which values of \(i, j, k \) the tree \(T[i, j, k] \) are golden graph. Similarly, for which values of \(i_1, i_2, \ldots, i_n \) the tree \(T[i_1, i_2, \ldots, i_n] \) are golden graphs. We have proved logically that the tree \(U_n \) (single headed snake) is not golden graph. We have proved the graph \(G_1 + G_2 \), where \(G_1 \) is regular graph and \(G_2 \) is prism, as golden graph and also \(K_n + P_5 \) as golden graph. In the end we have constructed golden graphs using prism, Mobious ladder, trees \((T[i, j, k], T[i_1, i_2, \ldots, i_n]) \), \(C_{5k} + K_1 \), \(G + P_4 \) and \(G + C_5 \).

References

Classifying the fuzzy subgroups of finite symmetric groups

Mike E. Ogiugo

Department of Mathematics, University of Ibadan, Ibadan, Nigeria, West Africa
ekpenogiugo@gmail.com

This is joint work with M. EniOluwafe

The main goal of this paper is to classify the fuzzy subgroups of the finite symmetric group S_n. First, an equivalence relation on the set of all fuzzy subgroups of a group G is defined. Without any equivalence relation on fuzzy subgroups of group G, the number of fuzzy subgroups is infinite, even for the trivial group. In this paper, classifying the fuzzy subgroups structure of a finite symmetric groups $S_n (n \geq 5)$ is made. An explicit formula for the number of distinct fuzzy subgroups of S_n is indicated. We also count the number of fuzzy subgroups for a particular class of finite symmetric groups.

One of the most important problems of fuzzy group theory is to classify the fuzzy subgroups of a finite groups. This topic has enjoyed a rapid development in the last few years. In our case the corresponding equivalence classes of fuzzy subgroups are closely connected to the chains of subgroups in S_n. As a guiding principle in determining the number of these classes, we found the number of maximal chains of S_n. Note that an essential role in solving our counting problem is played again by the Inclusion-Exclusion Principle. It leads us to some recurrence relations, whose solutions have been easily found.
On the average eccentricities of some forbidden subgraphs

Fadekemi Janet Osaye

University of Johannesburg, South Africa

osyefadekemi@gmail.com

Let G be a connected graph. Let H be a family of connected graphs. Then G is said to be H-free if it contains no induced sub-graph isomorphic to H. There are several important graph classes characterized by a single forbidden induced sub-graph. Examples of graph classes defined in terms of a single forbidden sub-graph is the K_3-free graphs and the C_4-free graphs.

In this talk, I would discussed the average eccentricities of K_3-free graphs and C_4-free graphs in terms of their order and minimum degrees. This can be interpreted as a method of minimizing the average of the maximum time delay of transferring messages from one vertex to the other in a modeled communication network.
The List Distinguishing Number of Graphs

Sajith Padinhatteeri

Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
sajith@math.iitb.ac.in

A graph G is said to be k–distinguishable [1] if the vertex set can be colored using k colors such that no nontrivial automorphism of G fixes all the color classes. Distinguishing number $D(G)$ is the least k for which G is k–distinguishable.

A graph G is said to be k–list distinguishable [3] if each of the vertices can be colored from corresponding given lists of size k such that G is k–distinguishable. List distinguishing number $D_l(G)$ is the least k for which G is k–list distinguishable. In this talk we discuss some results supporting the conjecture [3] that $D(G) = D_l(G)$ for any graph G. We discuss another statement [2] which strengthen the conjecture [3].

References

Φ-Harmonic Functions on Graphs

Roman Panenko
Novosibirsk, Russia
panenkora@gmail.com

Let Φ be a function with some special properties. Properly speaking, it is an N-function. In our talk we will consider a number of aspects of Φ-harmonic analysis on graphs. In particular, we will introduce the key definitions and will reveal that the ones in question are well-defined. Also we will give an overview of our results that bring discrete analogs of classical theorems for harmonic function in the usual sense: uniqueness theorem, Harnack’s inequality, Harnack’s principle. Our work generalizes results obtained in [1].

References

On the number of n-ary quasigroups, Latin hypercubes and MDS codes

Vladimir N. Potapov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
vpotapov@math.nsc.ru

A latin square of order n is an $n \times n$ array of n symbols in which each symbol occurs exactly once in each row and in each column. Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. If in a set of latin squares, any two latin squares are orthogonal then the set is called Mutually Orthogonal Latin Squares (MOLS). From the definition we can ensure that a latin d-cube is the Cayley table of a d-ary quasigroup. Denote by Q the underlying set of the quasigroup. A system consisting of t s-ary functions f_1, \ldots, f_t $(t \geq s)$ is orthogonal, if for each subsystem f_{i_1}, \ldots, f_{i_s} consisting of s functions it holds $\{(f_{i_1}(\tau), \ldots, f_{i_s}(\tau)) \mid \tau \in Q^s\} = Q^s$. If the system keeps to be orthogonal after substituting any constants for each subset of variables then it is called strongly orthogonal (see [2]). If the number of variables equals 2 $(s=2)$ then such system is equivalent to a set of MOLS. If $s > 2$, it is a set of Mutually Strong Orthogonal Latin s-Cubes (MSOLC). A subset C of Q^d is called an MDS code (of order $|Q|$ with code distance $t+1$ and with length d) if $|C \cap \Gamma| = 1$ for each t-dimensional face Γ. A system of t MSOLC is equivalent to MDS code with distance $t+1$ (see [2]). Numbers of MOLS, latin d-cubes and MDS codes for small orders are calculated in [4], [5].

Let $N(n,d,g)$ be the number of MDS codes of order n with code distance g and length d. An upper bound $N(n,d,2) \leq (1+o(1))n^{d+1}$ is proved in [6].

Theorem. For each prime number p and $d \leq p + 1$ if $3 \leq g \leq p$ or an arbitrary $d \geq 2$ if $g = 2$ it holds
\[\ln N(p^k,d,g) \geq (k+m)p(k-2)m \ln(p+o(1)) \] as $k \to \infty$, $m = d - g + 1$.

Corollary. (a) The logarithm of the number of latin d-cubes of order n is $\Theta(n^d \ln n)$ as $n \to \infty$.
(b) The logarithm of the number of pairs of orthogonal latin squares of order n is $\Theta(n^2 \ln n)$ as $n \to \infty$.

We use results of [3] to obtain (a) and results of [5] to obtain (b). Item (b) for a subsequence of integers was proved in [1]. Complete text of the report is available in [3].

The work was funded by the Russian Science Foundation (grant No 14-11-00553).

References

On normal edge-transitive Cayley graphs

Mina Rajabi Parsa

Shahid Rajaee Teacher Training University, Tehran, Iran
mina.rparsa@gmail.com

This is joint work with Modjtaba Ghorbani

Xu was the first mathematician who proposed the concept of normal Cayley graph in [8] and then Wang et al. [7] obtained all disconnected normal Cayley graphs. Recently, the normality of edge-transitive Cayley graphs is considered by mathematicians and one of the standard problems in this area is to determine the normal edge-transitivity of Cayley graphs with specific orders, see [1, 1, 3, 7]. Baik et al. [1] studied normal edge-transitivity of Cayley graphs on abelian groups of valency at most five and Bosma et al. [2] also considered the edge-transitive Cayley graphs of valency four on non-abelian simple groups. In [2, 9] authors obtained all tetravalent normal edge-transitive Cayley graphs on either a group of odd order or a finite non-abelian simple group. Recently, Kovács [1] classified all connected tetravalent non-normal arc-transitive Cayley graphs on dihedral groups and Darafsheh et al. [3] studied the normal edge-transitive Cayley graphs on non-abelian groups of order $4p$, where p is a prime number. In this paper, we consider the hexavalent normal edge-transitive Cayley graphs on groups of order pqr, where $p > q > r > 2$ are prime numbers.

References

Schur rings over elementary abelian two-groups

Sven Reichard
TU Dresden, Germany
sven.reichard@tu-dresden.de

Let G be a finite group. Consider the group ring $\mathbb{Z}[G]$. A Schur ring [1, 2] over G is a subring of $\mathbb{Z}[G]$ generated by simple quantities S_i, where $S_i \subseteq G$. Equivalently, a Schur ring over G is an association scheme with G acting regularly as a subgroup of the automorphism group.

Whereas Schur rings over some classes of groups, in particular cyclic groups, have been classified, little is known about other groups. However, recently some progress has been made in terms of enumeration [3]. Elementary abelian groups turned out to be quite resilient.

We report on new results, highlight some of the techniques, and give general constructions of Schur rings over elementary abelian 2-groups.

References

On the isomorphism problem for Cayley graphs over abelian p-groups

Grigory Ryabov
Novosibirsk State University, Novosibirsk, Russia
gric2ryabov@gmail.com

Let G be a finite group. A Schur ring over G is a subring of the group ring $\mathbb{Z}G$ that has a linear basis associated with a special partition of G. About 40 years ago Pöschel described all S-rings over cyclic p-groups of odd order. Applying this result Pöschel and Klin solved the isomorphism problem for circulant graphs with p^k vertices, where p is an odd prime.

Let $n = p^{k+1}$, where $p \in \{2, 3\}$ and k is a positive integer. Denote by G_n and P_n the class of all graphs on n vertices and the class of graphs on n vertices that isomorphic to Cayley graphs over $G = \mathbb{Z}_p \times \mathbb{Z}_{p^k}$ respectively. Recently all S-rings over G were classified in [1] for $p = 2$ and in [2] for $p = 3$. By using this classification we prove the following theorem.

Theorem. In the above notation, suppose that the group G is given by its multiplication table. Then the following problems can be solved in time $n^{O(1)}$:

1. given a graph $\Gamma \in G_n$, test whether $\Gamma \in P_n$;
2. given graphs $\Gamma, \Gamma' \in P_n$, test whether $\Gamma \cong \Gamma'$, and (if so) find the set of all isomorphisms between them.

References

On Deza graphs with disconnected second neighbourhoods of vertices

Leonid Shalaginov
Chelyabinsk State University, Chelyabinsk, Russia
leonidshalaginov@rambler.ru

This is joint work with Sergey Goryainov, Galina Isakova, Vladislav Kabanov and Natalia Maslova

We consider finite undirected graphs without loops and multiple edges.

A graph Γ is called a Deza graph if it is regular and the number of common neighbours of two distinct vertices takes on one of two values. A Deza graph Γ is called strictly Deza graph if it has diameter 2 and is not strongly regular. Let x be a vertex of a Deza graph Γ. The subgraph of the graph Γ induced by vertices which are at distance 2 from the vertex x is called second neighbourhood of the vertex x.

In 1992, Gardiner, Godsil, Hensel, Roye [1] proved that a strongly regular graph which contains a vertex with disconnected second neighbourhood is a complete multipartite graph with parts of the same size greater or equal to 2.

Alexander Gavrilyuk proposed to study strictly Deza graphs which contain a vertex with disconnected second neighbourhood.

Let Γ be a vertex transitive strictly Deza graph such that the second neighbourhood of each its vertex is disconnected. It was proved [2, Theorem 1] that Γ is either edge regular or coedge regular. Also, there were obtained a characterization of a strictly Deza graph which contain a vertex with disconnected second neighbourhood in cases of edge regularity and coedge regularity of this graph.

In this work we proved the following theorem which is a generalization of the previous result [2, Theorem 1].

Theorem. Let Γ be a strictly Deza graph such that the second neighbourhood of each its vertex is disconnected. Then Γ is either edge regular or coedge regular.

Acknowledgment. The work is supported by RFBR (grant no. 16-31-00316). The last co-author is supported by the grant of the President of Russian Federation for young scientists (grant no. MK-6118.2016.1) and is a winner of the competition for young mathematicians of the Dmitry Zimin Foundation “Dynasty” in 2013 year.

References

About group density function

Alexey A. Shlepkin
Siberian Federal University, Krasnoyarsk, Russia
shlyopkin@gmail.com

Let G be a group and $\mathfrak{N} = \{g_1, \ldots, g_n\}$ be a set of generators of G. Following [1, p. 102] define

$$F_{(G, \mathfrak{N})}(l) = \begin{cases}
1, & \text{if } l = 0, \\
\text{the number of elements of } G \text{ whose irreducible length in at most } l, & \text{if } l > 0
\end{cases}$$

to be a function of group growth of G on the set \mathfrak{N}. Let

$$P_{(G, \mathfrak{N})}(l) = \begin{cases}
1, & \text{if } l = 0, \\
F_{(G, \mathfrak{N})}(l) - F_{(G, \mathfrak{N})}(l - 1), & \text{if } l > 0
\end{cases}$$

be a group density function of G on the set of generators \mathfrak{N}.

Question. Let G and H be groups, \mathfrak{N} and \mathfrak{M} be sets of generators of G and H respectively. Suppose, $P_{(G, \mathfrak{N})}(l) = P_{(H, \mathfrak{M})}(l)$. Are groups G and H isomorphic?

We prove the following theorems.

Theorem 1. Let G and H be groups, \mathfrak{N} and \mathfrak{M} be sets of generators of G and H respectively. If $P_{(G, \mathfrak{N})}(l) = P_{(H, \mathfrak{M})}(l)$ then $|\mathfrak{N}| = |\mathfrak{M}|$.

Theorem 2. Let G and H be groups, \mathfrak{N} and \mathfrak{M} be sets of generators of G and H respectively. If $P_{(G, \mathfrak{N})}(l) = P_{(H, \mathfrak{M})}(l)$ then $|G| = |H|$.

A set $\mathfrak{N} = \{g_1, \ldots, g_n\}$ of generators of a group G is called independent if $\langle \mathfrak{N} \setminus \{g_i\} \rangle \cap \langle g_i \rangle = \langle e \rangle$ is a trivial subgroup for all $i \in \{1, \ldots, n\}$.

We prove the following theorem.

Theorem 3. Let G and H be finite abelian p-groups, \mathfrak{N} and \mathfrak{M} be independent sets of generators of G and H respectively. If $P_{(G, \mathfrak{N})}(l) = P_{(H, \mathfrak{M})}(l)$ then $G \cong H$.

The most interesting case of the Question is the case when G and H are finite simple non-abelian groups, \mathfrak{N} and \mathfrak{M} are independent sets of their generators.

Conjecture. Let G and H be finite non-abelian simple groups, \mathfrak{N} and \mathfrak{M} be independent sets of generators of G and H respectively. If $P_{(G, \mathfrak{N})}(l) = P_{(H, \mathfrak{M})}(l)$ then $G \cong H$.

Theorem 4. Let $A_8 = \langle \mathfrak{N} \rangle$ and $L_3(4) = \langle \mathfrak{M} \rangle$, where \mathfrak{N} and \mathfrak{M} are independent sets of generators. Then $P_{(A_8, \mathfrak{N})}(l) \neq P_{(L_3(4), \mathfrak{M})}(l)$.

References

Small cycles in the Bubble-Sort graph

Anna K. Simonova
Novosibirsk State University, Novosibirsk, Russia
nurka.sim@gmail.com

We investigate the Bubble-Sort graph BS_n, $n \geq 2$, that is the Cayley graph on the symmetric group Sym_n generated by transpositions from the set $t = \{t_{ii+1} \in Sym_n, 1 \leq i \leq n-1\}$. In 2006 Yosuke Kikuchia and Toru Arakib have shown that BS_n, $n \geq 4$, contains all cycles of even length l, where $4 \leq l \leq n!$. However a characterization of these cycles has not been done.

In this talk, a characterization of small cycles is given by their canonical forms. A sequence of indices. For cycles of a form $C_l = t_{ii+1}t_{jj+1}$, where $l = 2k$, and $t_{ii+1}t_{jj+1}$ appears k times, we write $C_l = (t_{ii+1}t_{jj+1})^k$.

The following results are obtained.

Theorem 1. Each of the vertices of the Bubble-Sort graph BS_n, $n \geq 4$, belongs to $(n-2)+(n-3)$ different 4-cycles of the canonical form $C_4 = (t_{ii+1}t_{jj+1})^2$, where $1 \leq i < j < n - 1$. Totally, there are $(n-2)(n-3)n!$ different cycles of length four in the graph.

Theorem 2. Each of the vertices of the Bubble-Sort graph BS_n belongs to $(n-2)$ 6-cycles of the canonical form

$C_6^1 = (t_{i+1}t_{2i+1})^3, \ 1 \leq i \leq n-2, \ n \geq 3$;

and to $(n-4)(n-3)$ 6-cycles of the canonical form

$C_6^2 = (t_{ii+1}t_{ii+2})(t_{jj+1})(t_{ii+1}t_{ii+2})(t_{jj+1}), 1 \leq i < j \leq n - 1, \ n \geq 5$.

and to $(n-3)(n-4)(n-5)$ 6-cycles of the canonical forms

$C_6^3 = (t_{ii+1}t_{jj+1}t_{kk+1})^2, k - 1 > j > i + 1, \ n \geq 6$;

$C_6^4 = (t_{ii+1}t_{jj+1}t_{kk+1}t_{kk+1}t_{jj+1}t_{kk+1}), k - 1 > j > i + 1, \ n \geq 6$.

In total, there are $(n^3 - 9n^2 + 29n - 30)n!$ cycles of length six in the graph.

Analogous results about cycles of length eight are presented by Theorem 3 in the talk.

References

Homotopy type of neighborhood complexes of Kneser graphs

Anurag Singh
Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India
anurags@iitk.ac.in

This is joint work with Nandini Nilakantan

A. Schrijver identified a family of vertex critical subgraphs of Kneser graphs called the stable Kneser graphs $SG_{n,k}$. A. Björner and M. de Longueville proved that the neighborhood complex of the stable Kneser graph $SG_{n,k}$ is homotopy equivalent to a k-sphere. It is also known that the neighborhood complex of $KG_{n,k}$ is homotopy equivalent to the wedge sum of k-spheres. The main objective here is to give the exact number for $KG_{2,k}$, i.e. to show that the homotopy type of the neighborhood complex of $KG_{2,k}$ is a wedge sum of $(k + 4)(k + 1) + 1$ spheres of dimension k. Further we will construct a subgraph $S_{2,k}$ of $KG_{2,k}$ whose neighborhood complex deformation retracts onto the neighborhood complex of $SG_{2,k}$.

References

Twisted Edwards curve and its group of points over finite field F_p

Julian V. Skrunkovich
National Technical University of Ukraine, Kiev, Ukraine
julian.skrunkovich@gmail.com

This is joint work with R. V. Skuratovskii

We consider the conditions of supersingularity of Edwards curve [1-3]. A normalization of this curve was constructed by us in projective form. We denote twisted Edwards curve having coefficients a and d as $E_{a,d}$. It was found in mistakes in conditions of supersingularity for this curve in theorem 3 of article [4]. More particularly if $p \equiv -3 \pmod{8}$ there is no degenerated twisted pair of curves as it states in [4]. Also if condition $p \equiv \pm 7 \pmod{8}$ holds then the orders of correspondent curves are such $N_{E_2} = N_{E_{2-1}} = p + 1$ as it states in [4]. For instance if $p = 31$ then $N_{E_2} = N_{E_{2-1}} = 28 = 8 \cdot 3 + 7 - 3$.

The main result of this paper is the theorem.

Theorem 1. If $p \equiv 3 \pmod{4}$ and p is prime, then numbers of points on $x^2 + y^2 = 1 + 2x^2y^2$ and on $x^2 + y^2 = 1 + 2^{-1}x^2y^2$ over F_p are equal $N_{E_{1,2}} = N_{E_{1,2-1}} = p + 1$ when $p \equiv 3 \pmod{8}$ and $N_{E_2} = N_{E_{2-1}} = p - 3$ when $p \equiv 7 \pmod{8}$.

There are two fundamental points [6] $((0, \pm 1), (\pm \sqrt{a}, 0))$ on $E_{a,d}$. The interesting relations between points of $E_{a,d}$ were found.

Theorem 2. For every no fundamental point (x, y) of $E_{a,d}$ holds the condition $(1 - a \frac{x^2}{p}) (1 - y^2) = \left(\frac{a-d}{p} \right)$.

If a is a quadratic residue over F_p then it exists the isomorphism between Edwards curve $E_{1,d}$ and twisted Edwards curve $E_{a,d}$, which is given by the mapping $X \mapsto \sqrt{a}x, Y \mapsto y$. This fact and the theorem lead us to a condition of supersingularity of $E_{a,d}$.

Remark. Point of order 8 exists on $E_{a,d}$ if and only if point of order 4 exists on $E_{a,d}$ and following conditions holds $(\pm \frac{1}{p} \sqrt{1 - \frac{a}{p}}) = 1, (\pm \frac{1}{p} \sqrt{1 - \frac{a}{p}}) = 1, (\frac{a}{p}) = 1, (\frac{-a}{p}) = 1$.

References

Mathematical Beauty

Irina Starikova

University of Sao Paulo, Department of Philosophy, Sao Paulo, Brazil

starikova.irina@gmail.com

Philosophers of mathematical practice have recently returned to the intriguing question of mathematical beauty. This clearly does not belong to traditional aesthetics, because of the abstractness of mathematical matter. Interestingly, mathematicians insist on its presence in mathematics and seem to grant it an important status. They regard mathematical beauty as a major inspiration and often a factor motivating their choices and preferences in practice, such as the search for more elegant proofs and solutions. Philosophers try to find an account for this very special attitude. Sceptics trumpet the fact that mathematics has nothing to please our senses, and claim that all intellectual pleasures are simply epistemic, hence non-aesthetic.

This talk aims to introduce the audience to the recent discussion, present the main actors and the main lines of play. Then it suggests a new angle on the situation from which something new can be learned to defeat a sceptic.

Using a case study from graph theory (the highly symmetric Petersen graph), this talk tries to distinguish genuine aesthetic from epistemic or practical judgements, and correct uses of the word “beautiful” from loose ones. It demonstrates that mathematicians may respond to a combination of perceptual properties of visual representations and mathematical properties of abstract structures; the latter seem to carry greater weight. Mathematical beauty thus primarily involves mathematicians’ sensitivity to aesthetics of the abstract.

References

On transversals in completely reducible quasigroups and in quasigroups of order 4

Anna Taranenko
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
taattg@mail.ru

An n-ary operation $f : \Sigma^n \to \Sigma$, where Σ is a set of cardinality q, is called an n-ary quasigroup of order q if in the equality $x_0 = f(x_1, \ldots, x_n)$ knowledge of any n elements of x_0, x_1, \ldots, x_n uniquely specifies the remaining one.

A transversal in an n-ary quasigroup f of order q is a set of $(n+1)$-tuples $\{ (a_0^i, a_1^i, \ldots, a_n^i) \}_{i=1}^q$, $a_k^i \in \Sigma$ such that $a_0^i = f(a_1^i, \ldots, a_n^i)$ for all $i \in \{1, \ldots, q\}$ and $a_k^i \neq a_k^j$ for all $i \neq j$ and $k \in \{0, \ldots, n\}$.

An n-ary quasigroup f is a composition of an $(n-m+1)$-quasigroup h and an m-quasigroup g if there exists a permutation $\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}$ such that for all $x_1, \ldots, x_n \in \Sigma$

$$f(x_1, \ldots, x_n) = h(g(x_\sigma(1), \ldots, x_\sigma(m)), x_\sigma(m+1), \ldots, x_\sigma(n)).$$

An n-ary quasigroup f is called completely reducible if $n \leq 2$ or if it can be represented as a composition of $n-1$ 2-ary quasigroups.

Although there exist completely reducible quasigroups without transversals, we prove that most of such quasigroups do have transversals.

Theorem 1. Let f be a completely reducible n-ary quasigroup of order q. If n is odd then f has at least $(q \cdot q!)^{\frac{n-1}{2}}$ transversals. If n is even and the most external quasigroup in a composition of f has a transversal, then f has at least $(q \cdot q!)^{\frac{n-1}{2}}$ transversals.

Also, using a result of [1] we prove the following theorem that sustains a conjecture about transversals in latin hypercubes proposed in [2].

Theorem 2. If n is odd then every n-ary quasigroup of order 4 has a transversal.

Acknowledgments. The work is supported by the Russian Science Foundation (grant 14–11–00555).

References

Arc-transitive antipodal distance-regular covers of complete graphs: almost simple case

Ludmila Yu. Tsiovkina
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
l.tsiovkina@gmail.com

We consider the problem of classification of arc-transitive antipodal distance-regular graphs of diameter three. Suppose that Γ is such a graph. Then Γ is an antipodal r-cover of K_{k+1}, Γ has intersection array $\{k, (r-1)\mu, 1; 1, \mu, k\}$, where k is the valency of Γ, r is the size of an antipodal class of Γ and μ denotes the number of common neighbours for any two vertices at distance two in Γ, and each edge of Γ lies in precisely $\lambda = k - (r-1)\mu - 1$ triangles. Let Σ be the set of antipodal classes of Γ, let $G = \text{Aut}(\Gamma)$ and let \bar{G} denote the permutation group, induced by G on Σ. Then \bar{G} is 2-transitive on Σ. Thus, the classification of the finite 2-transitive permutation groups is crucial for the study of such graphs, and divides the problem of their description naturally up in to two cases: \bar{G} is almost simple or \bar{G} is affine. Our aim is to study the case when the group \bar{G} is almost simple. If $r \in \{2, k\}$, then Γ is distance-transitive and the classification of such graphs can be found in [1]. We also refer to [13] for the case $\lambda = \mu$. Antipodal distance-regular graphs of diameter three that admit an arc-transitive action of $SU_3(q)$ have been recently classified (this result was announced in [4]). We show the following reduction theorem, which states that if \bar{G} is almost simple and $\lambda \neq \mu$, then either Γ is a cover from $[4]$, or $(\text{soc}(\bar{G}), k+1) = (L_d(q), (q^d-1)/(q-1))$, where $d \geq 3$.

Theorem. Suppose Γ is an arc-transitive distance-regular graph with intersection array $\{k, (r-1)\mu, 1; 1, \mu, k\}$, where $r \not\in \{2, k\}$, and $\lambda \neq \mu$. Let $G = \text{Aut}(\Gamma)$, let Σ be the set of antipodal classes of Γ and let \bar{G} denote the permutation group, induced by G on Σ. Suppose further that the socle \bar{T} of the group \bar{G} is a simple non-abelian group, and $(\bar{T}, k+1) \neq (L_d(q), (q^d-1)/(q-1))$, where $d \geq 3$. Then $\bar{T} = U_3(q)$. and $SU_3(q)$ acts arc-transitively on Γ with parameters $k = q^3$ and $\mu = (q+1)(q^2-1)/r$, where r divides $q+1$.

Acknowledgment. This work was supported by the grant of Russian Science Foundation, project no. 14-11-00061.

References

On the local structure of Mathon distance-regular graphs

Ludmila Yu. Tsiovkina

Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
l.tsiovkina@gmail.com

We study the structure of local graphs of Mathon distance-regular graphs of even valency. This is motivated by the general problem of classification of distance-regular graphs whose local graphs are strongly regular with the second eigenvalue at most a fixed natural number \(n \). We describe several infinite series of locally \(\Delta \)-graphs of this family, where \(\Delta \) is a pseudogeometric graph for \(pG_1(s,l) \), a strongly regular graph that is a union of some affine polar graphs of type \("-" \), or a rank-3 graph, realizable by the van Lint-Shrijver construction.

Theorem. Let \(q = 2^{2t} > 2 \) and assume that \(r > 1 \) divides \(q - 1 \). Let \(M(q,r) \) denote a Mathon distance-regular graph with intersection array \(\{q, (r - 1)(q - 1)/r, 1, 1, (q - 1)/r, q\} \) and let \(\Delta \) be a local graph of \(M(q,r) \). Then \(\Delta \) is arc-transitive and the following assertions hold.

1. If \(r \) divides \(2^t + 1 \), then either
 - (i) \(r = 2^t + 1 \) and \(\Delta \) is a union of \(2^t \) isolated \(2^t \)-cliques, or
 - (ii) \(r < 2^t + 1 \) and \(\Delta \) is a strongly regular graph with parameters \((2^{2t}, (2^t + 1)(2^t - 1)/r, ((2^t + 1)/r - 1)((2^t + 1)/r - 2) + 2^t - 2, (2^t + 1)((2^t + 1)/r - 1)/r) \).

2. If \(t \) is even and \(r \) divides \(2^{t/2} + 1 \), then either
 - (i) \(r = 2^{t/2} + 1 \) and \(\Delta \) is a strongly regular graph with parameters \((2^{2t}, (2^{t/2} - 1)(2^{t/2} + 1), 2^{t/2} - 2, 2^{t/2}(2^{t/2} - 1)) \) that is isomorphic to \(VO^- (4, 2^{t/2}) \), or
 - (ii) \(r < 2^{t/2} + 1 \) and \(\Delta \) is a strongly regular graph with parameters \((2^{2t}, z(2^{t/2} - 1)(2^{t/2} + 1), z(2^{t/2} - 1)(3 + z(2^{t/2} - 1) - 2^t, z(2^{t/2} - 1)(1 + z(2^{t/2} - 1))) \) which is a union of \(z = (2^{t/2} + 1)/r \) graphs that are isomorphic to \(VO^- (4, 2^{t/2}) \).

3. If \(r \) is a prime divisor of \(q - 1 \), \(2 \) is a primitive root modulo \(r \) and \((r - 1) \) divides \(2t \), then \(\Delta \) is a rank-3 graph with parameters \((2^{2t}, (2^{2t} - 1)/r, (2^{2t} - 3r + 1 + \varepsilon(r - 1)(r - 2)2^t)/r^2, (2^{2t} - r + 1 - \varepsilon(r - 2)2^t)/r^2) \) that is realized by the van Lint–Shrijver construction, where \(\varepsilon = (-1)^{2t/(r-1)+1} \).

Acknowledgement. This work was supported by the grant of Russian Science Foundation, project no. 14-11-00061.

References

Critical phenomena in random graphs

Olga Valba

N.N. Semenov Institute of Chemical Physics of the RAS, Moscow, Russia
National Research University Higher School of Economics, Moscow, Russia
valbaolga@gmail.com

This is joint work with V. Avetisov, A. Gorsky and S. Nechaev

In first model we consider random nondirected networks subject to dynamics conserving vertex degrees and study, analytically and numerically, equilibrium three-vertex motif distributions in the presence of an external field \(h \) coupled to one of the motifs. For small \(h \), the numerics is well described by the chemical kinetics for the concentrations of motifs based on the law of mass action. For larger \(h \), a transition into some trapped motif state occurs in Erdős-Renyi networks.

The second model is devoted to an equilibrium ensemble of large Erdős-Renyi topological random networks with two types of vertices, black and white, and fixed vertex degree prepared randomly with the bond connection probability, \(p \). The system energy is a sum of all unicolor triples (either all black or all white), weighted with a chemical potential of triples, \(\mu \). Minimizing the system energy, we see at any positive \(\mu \) the formation of two predominantly unicolor clusters, linked by a "string" of \(N_{bw} \) black-white bonds. The system exhibits a critical behavior manifested in emergence of a wide plateau on the \(N_{bw}(\mu) \)-curve. We have proposed an explanation of plateau formation in terms of statistical physics, relevant to spinodal decomposition of 1st order phase transitions.
Minimal supports of eigenfunctions of Hamming graphs

Alexander Valyuzhenich
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
graphkiper@mail.ru

Many combinatorial configurations (for example, perfect codes, latin squares and hypercubes, combinatorial designs and their \(q \)-ary generalizations — subspace designs) can be defined as an eigenfunction on a graph with some discrete restrictions. The study of these configurations often leads to the question about the minimum possible difference between two configurations from the same class (it is often related with bounds of the number of different configurations; for example, see [1–5]). Since the symmetric difference of these two configurations is also an eigenfunction, this question is directly related to the minimum cardinality of the support (the set of nonzeros) of an eigenfunction with given eigenvalue. This paper is devoted to the problem of finding the minimum cardinality of the support of eigenfunctions in the Hamming graphs \(H(n, q) \). Currently, this problem is solved only for \(q = 2 \) (see [4]). In [6] Vorob’ev and Krotov proved the lower bound on the cardinality of the support of an eigenfunction of the Hamming graph. In this paper we find the minimum cardinality of the support of eigenfunctions in the Hamming graphs with eigenvalue \(n(q - 1) - q \) and describe the set of functions with the minimum cardinality of the support.

It is well-known that the set of eigenvalues of the adjacency matrix of \(H(n, q) \) is \(\{ \lambda_m = n(q - 1) - qm \mid m = 0, 1, \ldots, n \} \). The support of \(f \) is denoted by \(S(f) \). The set of vertices \(x = (x_1, x_2, \ldots, x_n) \) of the graph \(H(n, q) \) such that \(x_i = k \) is denoted by \(T_k(i, n) \). We prove the following theorem:

Theorem. Let \(f : H(n, q) \rightarrow \mathbb{R} \) be an eigenfunction corresponding to \(\lambda_1 \), \(f \neq 0 \) and \(q > 2 \). Then \(|S(f)| \geq 2(q - 1)q^{n-2} \). Moreover, if \(|S(f)| = 2(q - 1)q^{n-2} \), then

\[
f(x) = \begin{cases}
 c, & \text{for } x \in T_k(i, n) \setminus T_m(j, n); \\
 -c, & \text{for } x \in T_m(j, n) \setminus T_k(i, n); \\
 0, & \text{otherwise};
\end{cases}
\]

where \(c \neq 0 \) is a constant, \(i, j, k, m \) are some numbers and \(i \neq j \).

Acknowledgments. This research was financed by the Russian Science Foundation (grant No 14-11-00555).

References

On Fourier decomposition of Preparata-like codes in the graph of the hypercube

Anastasia Vasil’eva
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
vasilan@math.nsc.ru

Given a graph \(G \), a subset \(C \subseteq V(G) \) is called a perfect code (with distance 3) if each vertex of \(G \) is at distance no more than 1 from exactly one code vertex. We consider the graph \(Q^n \) of \(n \)-dimensional binary hypercube. In this case perfect codes exist for every \(n \) of form \(n = 2^t - 1 \) and do not exist for any other \(n \). In the case \(n = 4^t - 1 \) there exist Preparata-like codes (we call them as Preparata codes), which are defined as the codes of distance 5 and size \(2^{n+1}/(n+1)^2 \). Every Preparata code \(P \) is included in a unique perfect code \(C(P) \) [1]; we denote this perfect code as \(C(P) \).

Let \(f_D \) denotes the orthogonal projection of the characteristic function of the set \(D \) to the \(i \)-th eigensubspace of the graph of \(Q^n \). (For any function its Fourier transform is defined as the collection of its orthogonal projections to the eigenfunctions \(\varphi^\alpha(x) = (-1)^{\langle \alpha, x \rangle}, \alpha, x \in Q^n \).)

It is known that for any perfect code \(C \) its characteristic function \(\chi_C \) can be represented as follows:

\[
\chi_C = 1/(n+1) + f_C^{(n+1)/2}.
\]

Analogously, for an arbitrary Preparata code \(P \) we have:

\[
\chi_P = 1/(n+1) + f_P^{(n+1)/2} + f_P^k + f_P^h,
\]

where \(k = (n + 1)/2 - \sqrt{n + 1}/2 \) and \(h = (n + 1)/2 + \sqrt{n + 1}/2 \).

Theorem. Let \(P \) be an arbitrary Preparata code in the graph of \(n \)-dimensional binary hypercube. Then

\[
f_P^{(n+1)/2} = \frac{2}{n + 1} f_{C(P)}^{(n+1)/2}.
\]

It is known that an \(i \)-component \(R \) of an arbitrary Preparata code can be extended to the \(i \)-component \(S(R) \) of the perfect code \(C(P) \). Then we have as a corollary that \(f_R^{(n+1)/2} = \frac{2}{n + 1} f_{S(R)}^{(n+1)/2} \).

Acknowledgments. The work was funded by the Russian science foundation (grant 14-11-00555)

References

On products of submodular subgroups of finite groups

Vladimir A. Vasilyev
Francisk Skorina Gomel State University, Gomel, Belarus
vovichx@mail.ru

Throughout this report, all groups are finite. Recall that a subgroup M of a group G is said to be modular in G if M is a modular element of the lattice of all subgroups of G. It means that the following conditions are fulfilled:

(1) $\langle X, M \cap Z \rangle = \langle X, M \rangle \cap Z$ for all $X \leq G$, $Z \leq G$ such that $X \leq Z$, and

(2) $\langle M, Y \cap Z \rangle = \langle M, Y \rangle \cap Z$ for all $Y \leq G$, $Z \leq G$ such that $M \leq Z$.

In the paper [2] I. Zimmermann introduced the notion of a submodular subgroup which generalizes the notion of a subnormal subgroup. Recall that a subgroup H of a group G is said to be submodular in G if there exists a chain of subgroups $H = H_0 \leq H_1 \leq \ldots \leq H_{s-1} \leq H_s = G$ such that H_{i-1} is a modular subgroup in H_i for $i = 1, \ldots, s$.

In [3] the class $sm\mathcal{U}$ of all groups with submodular Sylow subgroups was investigated and some of its properties were found. For instance, it was proved in [3] that $sm\mathcal{U}$ forms a hereditary saturated formation, its local function was found, criteria of the membership of a group to the class $sm\mathcal{U}$ were established.

This report is devoted to the further development of results of the paper [3]. In particular, we obtained the following result.

Theorem. Let G be a group, $G = G_1G_2$ be a product of submodular subgroups G_1 and G_2 such that $G_i \in sm\mathcal{U}$, $i = 1, 2$, and $(|G : G_1|, |G : G_2|) = 1$. Then $G \in sm\mathcal{U}$.

References

Majorana Representations of Triangle-Point Groups

Madeleine Whybrow

Imperial College London, South Kensington, London, UK

madeleine.whybrow10@imperial.ac.uk

Majorana theory was introduced by A. A. Ivanov \[1\] in 2009 as the axiomatization of certain properties of the 2A-axial vectors of the 196,884-dimensional Griess algebra. Ivanov’s work was inspired by a result of S. Sakuma \[2\] which reproved certain important properties of the Griess algebra in the context of vertex operator algebras. Majorana theory takes the key hypotheses of Sakuma’s result to provide a powerful framework, independent of vertex operator algebras, in which to study the Griess algebra and other related objects.

The axioms of Majorana theory can be used to define and construct objects known as Majorana algebras and Majorana representations. In this talk, I will present my own work on Majorana representations of triangle-point groups. A triangle-point group is a group G which is generated by three involutions a, b and c such that a and b commute and such that the product of any two elements of $T := a^G \cup b^G \cup c^G \cup (ab)^G$ has order at most 6. They play an important role in the study of the Monster group and the Monster graph.

References

A criterion of unbalance of some simple groups of Lie type

Viktor I. Zenkov
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
v1f9z52@mail.ru

A finite simple nonabelian group K is called locally balanced (locally 1-balanced) with respect to a prime p if $O_p(C_G(x))=1$ for any element x of order p from $G = Aut(K)$. The locally unbalanced finite simple nonabelian groups were determined in Theorem 7.7.1 from [1]. However, the item (d) of this theorem is wrong. This mistake is removed by the following theorem.

Theorem. Let G be a finite almost simple group, $K = Soc(G)$ be a group of Lie type over a field of characteristic r, and $x \in G \setminus Inn diag(K)$ be an element of a prime order $p \neq r$. Then the following conditions are equivalent:

1. $O_p(C_G(x)) \neq 1$;
2. x induces a field automorphism on K and $(|C_K(x)|, p) = 1$.

References

On Eulerian Identities in $UT_n(Q)$

Mikhail Zimin

Urals Federal University, Yekaterinburg, Russia

furoro@gmail.com

One of the known methods of building identities in matrix rings deals with eulerian multigraphs. A multigraph is a graph which is permitted to have multiple oriented edges with same end nodes, and loops - edges with same start and end node. Suppose, G is an eulerian graph with n edges and $\Pi(G)$ is the set of all its eulerian paths. Every such path π we consider to be a permutation of set $\{1, 2, \ldots, n\}$, by $\text{sgn}(\pi)$ we denote the sign of this transposition. An eulerian polynomial of the graph G is the polynomial:

$$P_G = \sum_{\pi \in \Pi(G)} \text{sgn}(\pi)x_{\pi(1)}\cdots x_{\pi(n)}.$$

The examples of eulerian polynomials are well known standard polynomials

$$S_n = \sum_{\pi \in S_n} \text{sgn}(\pi)x_{\pi(1)}\cdots x_{\pi(n)},$$

which are built from graphs with one vertex and n loops. The identity $f = 0$ is called eulerian, if f is an eulerian polynomial of some graph.

The identity basis of 2×2 matrices ring from eulerian polynomials is already found by M. Domokos in [1]. The following result deals with ring of upper triangular matrices $UT_n(Q)$, the identity basis of such ring from non-eulerian polynomials is also found by Yu. N. Maltsev in [2].

Theorem. In the class of rings with 1, the eulerian polynomial

$$P_{UT_n}(x_1, \ldots, x_n, y_1, \ldots, y_n, e_1, \ldots, e_{n-1}) = [x_1, y_1][x_2, y_2][e_2 \ldots e_{n-1}][x_n, y_n]$$

forms basis of the ring $UT_n(Q)$. The polynomial P_{UT_n} is built from graph G_{UT_n} displayed on fig.1.

References

On the spectra of automorphic extensions of finite simple exceptional groups of Lie type

Maria Zvezdina
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
maria.a.zvezdina@gmail.com

Given a finite group G, the spectrum of G is the set of orders of its elements. This set is denoted by $\omega(G)$. Groups are called isospectral if their spectra are equal. The number of pairwise non-isomorphic groups isospectral to a group G is denoted by $h(G)$. A group G is called recognizable by spectrum if $h(G) = 1$, and almost recognizable if $h(G)$ is finite. We say that the recognition problem is solved for a group G, if $h(G)$ is known, and if $h(G)$ is finite, the description of all pairwise non-isomorphic groups isospectral to G is given.

Let S be a finite simple exceptional group of Lie type and $S \neq ^3D_4(2)$. Then S is known to be almost recognizable. Moreover, every finite group isospectral to S is isomorphic to some group G such that $S \leq G \leq \text{Aut}(S)$ [1]. Thus, in order to solve the recognition problem for a group S, it suffices to describe all groups G such that $\omega(G) = \omega(S)$ and $S \leq G \leq \text{Aut}(S)$. Such descriptions already exist for all exceptional groups except for the groups of types E_6 and E_7. Let us denote groups of type E_6 by $E_6(q)$, $\varepsilon \in \{+, -\}$, where $E_0(q) = E_0^+(q)$ and $2E_0(q) = E_0^-(q)$. We complete the investigation of recognition problem for finite simple exceptional groups of Lie type by following results:

Theorem 1. Let S be a finite simple exceptional group $E_6^n(q)$, where q is a power of prime p, and let $S < G \leq \text{Aut}(S)$. Then $\omega(G) = \omega(S)$ if and only if G is an extension of S by a field automorphism, G/S is a 3-group, 3 divides $q - \varepsilon 1$ and $p \notin \{2, 11\}$.

Theorem 2. Let S be a finite simple exceptional group $E_7^n(q)$, where q is a power of prime p, and let $S < G \leq \text{Aut}(S)$. Then $\omega(G) = \omega(S)$ if and only if G is an extension of S by a field automorphism, G/S is a 2-group and $p \notin \{2, 13, 17\}$.

These results also complete the study of recognition problem for finite simple groups of Lie type over fields of characteristic 2 (results for classical groups are given in [2]).

References

List of Participants

Hasan Alhussein
Novosibirsk State University, Novosibirsk, Russia
E-mail: hassanalhussein2014@gmail.com

Daria Andryukhina
National Research University Higher School of Economics, Moscow, Russia
E-mail: andryukhinad@gmail.com

Anton Baykalov
Novosibirsk State University, Novosibirsk, Russia
E-mail: anton188@bk.ru

Matthew Bernard
University of California, Berkeley, USA
E-mail: mattb522@gmail.com

Anton Betten
Colorado State University, USA
E-mail: betten@math.colostate.edu

René van Bevern
Novosibirsk State University, Novosibirsk, Russia
E-mail: rvb@nsu.ru

Alexander Buturlakin
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: buturlakin@math.nsc.ru

Igor Bykov
Novosibirsk State University, Novosibirsk, Russia
E-mail: patrick.no10@gmail.com

Dmitry Churikov
Novosibirsk State University, Novosibirsk, Russia
E-mail: churikoev@gmail.com

Olga Dashkova
The Branch of Moscow State University in Sevastopol, Sevastopol, Russia
E-mail: odashkova@yandex.ru

Andrey Dobrynin
Sobolev Institute of Mathematics SB RAS, Russia
E-mail: dobr@math.nsc.ru
Edward Dobson
Mississippi State University, USA,
University of Primorska, Koper, Slovenia
E-mail: dobson@math.msstate.edu

Shaofei Du
Capital Normal University, China
School of Mathematical Sciences, China
E-mail: dushf@mail.cnu.edu.cn

Tatiana Fedoryaeva
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: fti@math.nsc.ru

Alexander Gavrilyuk
University of Science and Technology of China, Hefei, China
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
E-mail: sasha@ustc.edu.cn

Farzaneh Gholaminezhad
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Iran
E-mail: gholaminezhad@grad.kashanu.ac.ir

Modjtaba Ghorbani
Department of Mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran
E-mail: mghorbani@srttu.edu

Aleksey Glebov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: angle@math.nsc.ru

Hamid Reza Golmohammadi
Ale-Taha Institute Of Higher Education, Tehran, Iran
E-mail: hgolmohammadi26@gmail.com

Anastasiya Gorodilova
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: gorodilova@math.nsc.ru

Sergey Goryainov
Chelyabinsk State University, Chelyabinsk, Russia
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
E-mail: 44g@mail.ru
List of Participants

Graphs and Groups, Spectra and Symmetries

Shuchita Goyal
Department of Mathematics, Indian Institute of Technology Bombay, India
E-mail: shuchita@iitb.ac.in

Maria Grechkoseeva
Novosibirsk State University, Novosibirsk, Russia
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: grechkoseeva@gmail.com

Elena Grishina
Novosibirsk State University, Novosibirsk, Russia
E-mail: grishina92@gmail.com

Štefan Györgyi
Matej Bel University, Banská Bystrica, Slovakia
E-mail: stefan.gyurki@umb.sk

Ji-Young Ham
Department of Science, Hongik University, Seoul, Korea
Department of Mathematical Sciences, Seoul National University, Seoul, Korea
E-mail: jiyoungham1@gmail.com

Soomayeh Heydari
Department of pure Mathematics, Faculty of Mathematical Sciences, Shahre-kord University, Shahrekord, Iran
E-mail: s.heydari.math@gmail.com

Mitsugu Hirasaka
Pusan National University, South Korea
E-mail: hirasaka@pusan.ac.kr

Lih-Hsing Hsu
Providence University, Taichung, Taiwan
E-mail: lihhsing@gmail.com

Yuhei Inoue
Tohoku University, Sendai, Japan
E-mail: inoue@ims.is.tohoku.ac.jp

Galina Isakova
Chelyabinsk State University, Chelyabinsk, Russia
E-mail: carleink@gmail.com

Keiji Ito
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
E-mail: k.ito@ims.is.tohoku.ac.jp

August, 15-28, 2016

Akademgorodok, Novosibirsk, Russia
Tatsuro Ito
School of Mathematical Sciences, Anhui University, Hefei, China
E-mail: tito@staff.kanazawa-u.ac.jp

Alexander Ivanov
Department of Mathematics, Imperial College, South Kensington, London, UK
E-mail: a.ivanov@imperial.ac.uk

Maryam Jalali-Rad
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran
E-mail: jalali6834@gmail.com

Vladislav Kabanov
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
Ural Federal University, Yekaterinburg, Russia
E-mail: vvk@imm.uran.ru

Lev Kazarin
Yaroslav P.Demidov State University, Department of Mathematics, Yaroslavl, Russia
E-mail: lsk46@mail.ru

Ekaterina Khomyakova
Novosibirsk State University, Novosibirsk, Russia
E-mail: ekhomnsu@gmail.com

Konstantin Kobylkin
Ural Federal University, Yekaterinburg, Russia
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
E-mail: kobylkins@gmail.com

Anatoly Kondrat’ev
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
E-mail: a.s.kondratiev@imm.uran.ru

Elena Konstantinova
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: e_konsta@math.nsc.ru

Jack Koolen
University of Science and Technology of China, Hefei, China
E-mail: koolen@ustc.edu.cn

Olga Kravtsova
Siberian Federal University, Krasnoyarsk, Russia
E-mail: ol71@bk.ru
Denis Kroto
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: dskrotov@gmail.com

Sho Kubota
Tohoku University, Sendai, Japan
E-mail: kubota@ims.is.tohoku.ac.jp

Klavlja Kutnar
University of Primorska, Koper, Slovenia
E-mail: klavlja.kutnar@upr.si

Jin Ho Kwak
Beijing Jiaotong University, China
E-mail: jinkwak@bjtu.edu.cn

Maria Lisitsyna
Budyonny Military Academy of Telecommunications, St.Petersburg, Russia
E-mail: lisitsynama@gmail.com

Andrey Mamontov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: andreysmamontov@gmail.com

Dragan Marušič
University of Primorska, Koper, Slovenia
E-mail: dragan.marusic@upr.si

Natalia Maslova
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
Ural Federal University, Yekaterinburg, Russia
E-mail: butterson@mail.ru

Ilya Matkin
Chelyabinsk State University, Chelyabinsk, Russia
E-mail: ilya.matkin@gmail.com

Alexander Mednykh
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: smedn@mail.ru
Ilya Mednykh
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: ilyamednykh@mail.ru

Alexey Medvedev
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Central European University, Budapest, Hungary
E-mail: an_medvedev@yahoo.com

Nikolai Minigulov
Ural Federal University, Yekaterinburg, Russia
E-mail: nikola-minigulov@mail.ru

Anastasiya Mityanina
Chelyabinsk State University, Chelyabinsk, Russia
E-mail: nastya.mityanina@gmail.com

Ivan Mogilnykh
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: ivmog@math.nsc.ru

Bojan Mohar
Simon Fraser University, Canada
E-mail: mohar@sfu.ca

Michele Mulazzani
Department of Mathematics, University of Bologna, Bologna, Italy
E-mail: michele.mulazzani@mibb.it

Akihiro Munemasa
Tohoku University, Sendai, Japan
E-mail: munemasa@math.is.tohoku.ac.jp

Mukesh Kumar Nagar
Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
E-mail: mukesh.phd@math.iitb.ac.in

Swamy Narayan
KLE Technological University, Hubli, Karnataka, India
E-mail: nswamy@kvb.edu
List of Participants

Roman Nedela
University of West Bohemia, Czech Republic
E-mail: nedela@ntis.zcu.cz

Fadekemi Osaye
University of Johannesburg, South Africa
E-mail: osayefadekemi@gmail.com

Patric Östergård
Aalto University, Finland
E-mail: patric.ostergard@aalto.fi

Dmitry Panasenko
Chelyabinsk State University, Chelyabinsk, Russia
E-mail: malare95@mail.ru

Roman Panenko
Novosibirsk, Russia
E-mail: panenkora@gmail.com

Anna Pankratova
Novosibirsk State University, Novosibirsk, Russia
E-mail: annananechka@gmail.com

Olga Parshina
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: parolja@gmail.com

Ilia Ponomarenko
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
E-mail: inp@pdmi.ras.ru

Vladimir Potapov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: vpotapov@math.nsc.ru

Alexander Prolubnikov
Omsk State University, Omsk, Russia
E-mail: a.v.prolubnikov@mail.ru

Mina Rajabi Parsa
Shahid Rajaee Teacher Training University, Tehran, Iran
E-mail: mina.rparsa@gmail.com

August, 15-28, 2016

Akademgorodok, Novosibirsk, Russia
Sven Reichard
TU Dresden, Germany
E-mail: sven.reichard@tu-dresden.de

Kristina Rogalskaya
Diasoft Systems, Russia
E-mail: krisrowdy6@gmail.com

Grigory Ryabov
Novosibirsk State University, Novosibirsk, Russia
E-mail: gric2ryabov@gmail.com

Leonid Shalaginov
Chelyabinsk State University, Chelyabinsk, Russia
E-mail: leonidshalaginov@rambler.ru

Alexey Shlepkin
Siberian Federal University, Krasnoyarsk, Russia
E-mail: shlyopkin@gmail.com

Anna Simonova
Novosibirsk State University, Novosibirsk, Russia
E-mail: nurka.sim@gmail.com

Julian Skrunkovich
National Technical University of Ukraine, Kiev, Ukraine
E-mail: julian.skrunkovich@gmail.com

Ruslan Skuratovskii
National Pedagogical University, Kiev, Ukraine
E-mail: ruslan@math.kiev.ua

Faina Solov'eva
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: sol@math.nsc.ru

Ev Sotnikova
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: lucernavesper@gmail.com

Irina Starikova
University of San Paulo, Department of Philosophy, San Paulo, Brazil
E-mail: starikova.irina@gmail.com
List of Participants

Alexey Staroletov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: astaroletov@gmail.com

Ivan Takhonov
Novosibirsk State University, Novosibirsk, Russia
E-mail: takhonor@gmail.com

Anna Taranenko
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: taattg@mail.ru

Yuriy Tarannikov
Lomonosov Moscow State University, Moscow, Russia
E-mail: yutaram@gmail.com

Ludmila Tsiovkina
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
E-mail: l.tsiovkina@gmail.com

Alexandr Valyuzhenich
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: graphkiper@mail.ru

Andrey Vasil’ev
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
E-mail: vasand@math.nsc.ru

Anastasia Vasil’eva
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: vasilan@math.nsc.ru

Madeleine Whybrow
Imperial College London, South Kensington, London, UK
E-mail: madeleine.whybrow10@imperial.ac.uk

Yaokun Wu
Shanghai Jiao Tong University, Shanghai, China
E-mail: ykwu@sjtu.edu.cn

Kirill Yakunin
Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia
E-mail: kirilyakunin7@gmail.com

August, 15-28, 2016

Akademgorodok, Novosibirsk, Russia
Viktor Zenkov
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
E-mail: v1i9z52@mail.ru

Matan Ziv-Av
Ben-Gurion University of the Negev, Beer Sheva, Israel
E-mail: matan@svgalib.org

Maria Zvezdina
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
E-mail: maria.a.zvezdina@gmail.com
Author Index

Andryukhina Daria, 43
Ashrafi Ali Reza, 44, 56, 74
Asma Hamzeh, 45
Baykalov Anton, 46
Belonogov Vyacheslav A., 47
Betten Anton, 49
Bhat Mushaq A., 48
Bykov Igor S., 49
Chemikov Nickolay, 50
Churikov Dmitry, 51
Dashkova Olga Yu., 52
Dobson Edward, 53
Du Shaofei, 54
Efimov Konstantin, 55
Fedorov Anton N., 56
Fedoryaeva Tatiana I., 57
Gavrilyuk Alexander, 58, 61, 81
Gholamnezhad Farzaneh, 59
Ghorbani Modjtaba, 60
Grebnev Aleksey N., 61
Golmohammadi Hamid Reza, 62
Goryaikov Anastasiya, 63
Goryainov Sergey V., 64
Goyal Shuchita, 65
Gyirksti Stefan, 66
Ham Ji-Young, 67
Heydari Somayeh, 68
Hirasaka Mitsugu, 69
Hsu Lih-Hsing, 70
Incuc Yuhui, 71
Isakova Galina, 72
Ito Keiji, 73
Ito Tatsuro, 74
Ivanov Alexander A., 75
Jafari Rad Nader, 76
Jalali-Rad Maryam, 77
Kabanov Vladislav V., 78
Kazarin Lev, 79
Khomyakova Elaterina N., 80
Kobylykin Konstantin S., 81
Kondrat’ev Anatoly S., 82
Konstantinova Elena V., 83
Koolen Jack, 84
Koorepayan-Moftakhar Fatemeh, 85
Kravtsova Olga, 86
Kubota Sio, 87
Kutnar Klavdij, 88
Kwak Jin Ho, 89

Listytsyna Maria, 90
Lozhkin Alexander, 91
Makhnov Alexander, 92
Malik Shabnam, 93
Marusic Dragana, 94
Maslova Natalia V., 95, 96
Matkin Ilya, 97
Mednykh Alexander, 98
Mednykh Ilya, 99
Minigulov Nikolay A., 100, 101
Mityagina Anastasiya V., 102
Mogilnykh Ivan Yu., 103
Mohar Bojan, 104
Mozhey Natalya, 105
Mulazzani Michele, 106, 107
Nememasa Akihiro, 108
Muzychuk Mikhail, 109
Nagar Mukesh Kumar, 110
Narayan Swamy, 111
Nedela Roman, 112

Oguigo Mike E., 113
Osaye Fadekemi Janet, 114
Östergård Patrik, 115

Padinhalatteeri Sajith, 116
Panasenko Dmitry, 117
Panenko Roman, 118
Ponomarenko Illia, 119, 120
Potapov Vladimir N., 121
Rajabi-Parsa Mina, 122
Reichard Sven, 123
Ryabov Grigory, 124

Skhalaginov Leonid, 125
Shelepkin Alexey A., 126
Simonova Anna K., 127
Singh Anurag, 128
Skurativskii Ruslan V., 129

Skurativskii Ruslan V., 130
Solov’eva Faina I., 86
Starikova Irina, 103

Taranenko Anna, 105
Tarannikov Yuriy, 88
Tsiockina Ludmila Yu., 106 107

Valba Olga, 43 108
Valyuzhenich Alexandr, 109
Vasil’ev Andrey, 39 51
Vasil’eva Anastasia, 110
Vasilyev Vladimir A., 111

Whybrow Madeleine, 112
Wu Yaokun, 40

Zenkov Viktor I., 113
Zimin Mikhaïl, 114
Ziv-Av Matan, 41
Zvezdina Maria, 115
The International Conference and PhD-Master Summer School «Graphs and Groups, Spectra and Symmetries» 2016

<table>
<thead>
<tr>
<th>Monday August 15</th>
<th>Tuesday August 16</th>
<th>Wednesday August 17</th>
<th>Thursday August 18</th>
<th>Friday August 19</th>
<th>Saturday August 20</th>
<th>Sunday August 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 18:00</td>
<td>Welcome party</td>
<td>Goryainov</td>
<td>Kondrat’ev</td>
<td>Gholaminezhad</td>
<td>Golmohammadi</td>
<td>Kabanov</td>
</tr>
<tr>
<td>Registration</td>
<td>Hall of the Conference room</td>
<td>9:00 – 10:30</td>
<td>Invited talk: T.Ito</td>
<td>Invited talk: Gavrilyuk</td>
<td>Invited talk: Vasil’ev</td>
<td>16:00 – 17:00</td>
</tr>
<tr>
<td>9:00 – 18:00</td>
<td>Hall of the Conference room</td>
<td>Minicourse 2: Dobson Lecture 1</td>
<td>Minicourse 2: Dobson Lecture 2</td>
<td>Minicourse 2: Dobson Lecture 3</td>
<td>Minicourse 2: Dobson Lecture 4</td>
<td>Mityanina</td>
</tr>
<tr>
<td>9:00 – 18:00</td>
<td>NSU Sports Complex</td>
<td>10:30 – 12:00</td>
<td>Invited talk: Rajabi-Parsa</td>
<td>Invited talk: Mininov</td>
<td>16:00 – 17:00</td>
<td>Afternoon Sessions</td>
</tr>
<tr>
<td>19:00 – 21:00</td>
<td>NSU Sports Complex</td>
<td>12:00 – 14:00</td>
<td>Invited talk: A. Arroyo</td>
<td>Invited talk: Koolen</td>
<td>17:00 – 19:00</td>
<td>Special Session</td>
</tr>
<tr>
<td>19:00 – 21:00</td>
<td>NSU Sports Complex</td>
<td>14:00 – 16:00</td>
<td>17:00 – 19:00</td>
<td>18:00 – 20:00</td>
<td>19:00 – 22:00</td>
<td>Discussions</td>
</tr>
<tr>
<td>19:00 – 21:00</td>
<td>NSU Sports Complex</td>
<td>16:00 – 17:00</td>
<td>18:00 – 20:00</td>
<td>19:00 – 21:00</td>
<td>20:00 – 22:00</td>
<td>Conference dinner</td>
</tr>
</tbody>
</table>
The International Conference and PhD-Master Summer School «Graphs and Groups, Spectra and Symmetries» 2016

| Monday
August 22 | Tuesday
August 23 | Wednesday
August 24 | Thursday
August 25 | Friday
August 26 | Saturday
August 27 | Sunday
August 28 |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| **Excursions/
Sport Activities** |

07:30 – 09:45 Breakfast

10:00 – 13:00 Morning Sessions

<table>
<thead>
<tr>
<th>PhD-Master Summer School</th>
<th>Conference</th>
<th>PhD-Master Summer School</th>
<th>Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 – 10:50</td>
<td>10:00 – 10:50</td>
<td>10:00 – 10:50</td>
<td>10:00 – 10:50</td>
</tr>
<tr>
<td>Minicourse 3: Ivanov</td>
<td>Invited talk: Betten</td>
<td>Minicourse 3: Ivanov</td>
<td>Invited talk: Hirasaka</td>
</tr>
<tr>
<td>Lecture 1</td>
<td></td>
<td>Lecture 3</td>
<td></td>
</tr>
<tr>
<td>11:00 – 11:50</td>
<td>11:00 – 11:50</td>
<td>11:00 – 11:50</td>
<td></td>
</tr>
<tr>
<td>Minicourse 3: Ivanov</td>
<td>Invited talk: Tarannikov</td>
<td>Minicourse 3: Ivanov</td>
<td>Invited talk: Ham</td>
</tr>
<tr>
<td>Lecture 2</td>
<td></td>
<td>Lecture 4</td>
<td></td>
</tr>
</tbody>
</table>

11:50 – 12:10 Coffee break

12:10 – 13:00 Lunch

14:30 – 19:00 Afternoon Sessions

<table>
<thead>
<tr>
<th>PhD-Master Summer School</th>
<th>Conference</th>
<th>PhD-Master Summer School</th>
<th>Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minicourse 4: Mohar</td>
<td>Invited talk: Du</td>
<td>Minicourse 4: Mohar</td>
<td>Invited talk: Nedel</td>
</tr>
<tr>
<td>Lecture 2</td>
<td></td>
<td>Lecture 4</td>
<td></td>
</tr>
</tbody>
</table>

15:20 – 16:00 Coffee break

16:00 – 19:00 Conference

<table>
<thead>
<tr>
<th>Whybrow</th>
<th>Goyal</th>
<th>Ryabov</th>
<th>Inoue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Churikov</td>
<td>Nagar</td>
<td>Reichard</td>
<td>Glebo</td>
</tr>
<tr>
<td>Kravtsova</td>
<td>Jalali-Rad</td>
<td>Valuzhenich</td>
<td>Bykov</td>
</tr>
<tr>
<td>Matkin</td>
<td>Panenko</td>
<td>Mednykh</td>
<td>Osaye</td>
</tr>
</tbody>
</table>

17:50 – 18:10 Coffee break

19:00 – 20:00 Dinner

<table>
<thead>
<tr>
<th>Skuratovskii</th>
<th>K.Ito</th>
<th>Andryukhina</th>
<th>Heydari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shlepkin</td>
<td>Mulazzani</td>
<td>Kobylykin</td>
<td>Starikova</td>
</tr>
</tbody>
</table>

20:00 – 22:00 Problem solving

<table>
<thead>
<tr>
<th>Minicourse 3</th>
<th>Minicourse 4</th>
<th>Football/ Volleyball</th>
<th>Minicourse 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSU Sports Complex</td>
<td>Minicourse 4</td>
<td>Problem solving</td>
<td>Minicourse 4</td>
</tr>
</tbody>
</table>
Announcement

Krasovskii Institute of Mathematics and Mechanics of Ural Branch of Russian Academy of Sciences, Ural Federal University named after the first President of Russia B. N. Yeltsin and Chelyabinsk State University organize the International Conference and PhD-Master Summer School “Groups and Graphs, Metrics and Manifolds” (G2M2). All scientific activities will take place in one of the recreation areas near Yekaterinburg, Russia, July, 22–30, 2017.

G2M2 aims to cover modern aspects of group theory, graph theory and 3-manifold topology, including knot theory.

The scientific program of G2M2 includes:

- Lectures of main speakers
- Short contributions in sections
- Minicourses in the frame of the PhD-Master Summer School

The official language of G2M2 is English.

Confirmed Lecturers:

Michel-Marie Deza
Ecole Normale Superieure, Paris, France

Olga G. Kharlampovich
Department of Mathematics and Statistics, Hunter College, CUNY, New York, USA

Mikhail V. Volkov
Ural Federal University, Yekaterinburg, Russia

The official website of G2M2 is http://g2m2.imm.uran.ru.