New infinite family of Cameron-Liebler line classes

Ilia Matkin
Chelyabinsk State University (Chelyabinsk, Russia)

based on joint work with Alexander Gavrilyuk,
USTC (Hefei, China),
and Tim Penttila,
Colorado State University (Fort-Collins, USA).

G2S2, Novosibirsk, August 2016
Projective geometry

Let $V = GF(q)^{n+1}$.

$PG(n, q)$ — n-dim. projective space over $GF(q)$

$\sim : x \sim y \ (x, y \in V \setminus \{0\}) \iff \exists \alpha \in GF(q) : x = \alpha y$

$PG(n, q) = (V \setminus \{0\})/\sim$

- point of $PG(n, q)$
 1-dim. vector subspace of V

- line of $PG(n, q)$
 2-dim. vector subspace of V

- ...

- hyperplane
 n-dim. vector subspace of V

- spread — a line set partitioning the points of $PG(n, q)$
Projective geometry

Let $V = GF(q)^{n+1}$.

- $PG(n, q) \rightarrow n$-dim. projective space over $GF(q)$
 \[\sim : x \sim y \ (x, y \in V \setminus \{0\}) \iff \exists \alpha \in GF(q) : x = \alpha y \]
 \[PG(n, q) = (V \setminus \{0\})/\sim \]

- point of $PG(n, q)$
 1-dim. vector subspace of V

- line of $PG(n, q)$
 2-dim. vector subspace of V

- ...$

- hyperplane
 n-dim. vector subspace of V

- spread — a line set partitioning the points of $PG(n, q)$
Projective geometry $PG(3, q)$

- \(\exists ! \) line through \(\forall \) pair of points with exactly \(q + 1 \) points on a line, while \(\forall \) pair of lines has at most one point in common

- a line belongs to exactly \(q + 1 \) planes, and \(\exists ! \) line in the intersection of \(\forall \) pair of planes

- $PG(3, q)$ always contains a spread (a lot of them)
Projective geometry $PG(3, q)$

- ∃! line through ∀ pair of points with exactly $q + 1$ points on a line, while ∀ pair of lines has at most one point in common

- a line belongs to exactly $q + 1$ planes, and ∃! line in the intersection of ∀ pair of planes

- $PG(3, q)$ always contains a spread (a lot of them)
A Cameron-Liebler line class \mathcal{L} is a set of lines of $PG(3, q)$ such that

\exists a number x: for \forall spread S

$$|\mathcal{L} \cap S| = x$$

The number x is called the parameter of \mathcal{L}.

One can show that $|\mathcal{L}| = x(q^2 + q + 1)$.

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leq \frac{q^2+1}{2}$.
Cameron-Liebler line class: definition

A Cameron-Liebler line class \mathcal{L} is a set of lines of $PG(3, q)$ such that

\exists a number x: for \forall spread S

$$|\mathcal{L} \cap S| = x$$

The number x is called the parameter of \mathcal{L}.

One can show that $|\mathcal{L}| = x(q^2 + q + 1)$.

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leq \frac{q^2+1}{2}$.
A Cameron–Liebler line class \mathcal{L} is a set of lines of $\text{PG}(3, q)$ such that

\exists a number x: for \forall spread S

$$|\mathcal{L} \cap S| = x$$

The number x is called the parameter of \mathcal{L}.

One can show that $|\mathcal{L}| = x(q^2 + q + 1)$.

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron–Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow \text{w.l.o.g. } x \leq \frac{q^2 + 1}{2}$.
Cameron-Liebler line class: definition

A Cameron-Liebler line class \mathcal{L} is a set of lines of $PG(3, q)$ such that

\exists a number x: for \forall spread S

$$|\mathcal{L} \cap S| = x$$

The number x is called the parameter of \mathcal{L}.

One can show that $|\mathcal{L}| = x(q^2 + q + 1)$.

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leq \frac{q^2+1}{2}$.
Cameron-Liebler line class: examples

$\text{Star}(P)$

$x = 1$

$\text{Line}(\pi)$

$x = 2$

$\text{Star}(P) \cup \text{Line}(\pi)$
Cameron-Liebler conjecture and motivation

Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., \(x \not\in \{3, \ldots, \frac{q^2+1}{2}\} \)).

- This problem is related to the problem of classification of the collineation groups of \(PG(n, q) \) with the same number of orbits on points and lines.
 - Solved by Bamberg and Penttila.

- The Cameron-Liebler line classes give rise to completely regular codes of strength 1 in the Grassmann graphs \(J_q(4, 2) \).

- The Cameron-Liebler line classes give rise to some point sets in \(PG(5, q) \) with two intersection numbers with respect to planes \(\Rightarrow \) projective 2-weight codes \(\Rightarrow \) strongly regular graphs.
Cameron-Liebler conjecture and motivation

Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., \(x \notin \{3, \ldots, \frac{q^2+1}{2}\} \)).

- This problem is related to the problem of classification of the collineation groups of \(PG(n, q) \) with the same number of orbits on points and lines.

 Solved by Bamberg and Penttila.

- The Cameron-Liebler line classes give rise to completely regular codes of strength 1 in the Grassmann graphs \(J_q(4, 2) \).

- The Cameron-Liebler line classes give rise to some point sets in \(PG(5, q) \) with two intersection numbers with respect to planes \(\Rightarrow \) projective 2-weight codes \(\Rightarrow \) strongly regular graphs.
Cameron-Liebler conjecture and motivation

Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., \(x \notin \{3, \ldots, \frac{q^2+1}{2}\} \)).

- This problem is related to the problem of classification of the collineation groups of \(PG(n, q) \) with the same number of orbits on points and lines.

 Solved by Bamberg and Penttila.

- The Cameron-Liebler line classes give rise to completely regular codes of strength 1 in the Grassmann graphs \(J_q(4, 2) \).

- The Cameron-Liebler line classes give rise to some point sets in \(PG(5, q) \) with two intersection numbers with respect to planes \(\Rightarrow \) projective 2-weight codes \(\Rightarrow \) strongly regular graphs.
Cameron-Liebler conjecture and motivation

Conjecture (Cameron, Liebler, 1982)
The only Cameron-Liebler line classes are those shown above (i.e., $x \not\in \{3, \ldots, \frac{q^2+1}{2}\}$).

- This problem is related to the problem of classification of the collineation groups of $PG(n, q)$ with the same number of orbits on points and lines. Solved by Bamberg and Penttila.

- The Cameron-Liebler line classes give rise to completely regular codes of strength 1 in the Grassmann graphs $J_q(4, 2)$.

- The Cameron-Liebler line classes give rise to some point sets in $PG(5, q)$ with two intersection numbers with respect to planes ⇒ projective 2-weight codes ⇒ strongly regular graphs.
Counterexample

Conjecture (Cameron, Liebler, 1982)
The only Cameron-Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, \frac{q^2+1}{2}\}$).

The conjecture was disproved by Bruen and Drudge (1999). They constructed an infinite family of Cameron-Liebler line classes with parameter $x = \frac{q^2+1}{2}$ for all odd q.
Counterexample

Conjecture (Cameron, Liebler, 1982)
The only Cameron-Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, \frac{q^2+1}{2}\}$?).

The conjecture was disproved by Bruen and Drudge (1999). They constructed an infinite family of Cameron-Liebler line classes with parameter $x = \frac{q^2+1}{2}$ for all odd q.
Counterexamples

- $x = 7$ in $PG(3, 4)$.

 (Govaerts, Penttila’05)

- In 2011 M. Rodgers constructed new Cameron–Liebler line classes for many odd values of q ($q < 200$) satisfying $q \equiv 1 \text{ mod } 4$ and $q \equiv 1 \text{ mod } 3$, having parameter $x = \frac{1}{2}(q^2 - 1)$.

 These new examples are made up of a union of orbits of a cyclic collineation group having order $q^2 + q + 1$.

 Rodgers, 2011.

- $x = 10$ in $PG(3, 5)$.

 G. and Metsch, 2013.

- a new infinite family in $PG(3, q)$, $q \equiv 5$ or $9 \text{ mod } 4$,

 $x = (q^2 - 1)/2 \Rightarrow x = (q^2 + 1)/2$.

 Momihara, Feng, Xiang, 2014.

 De Beule, Demeyer, Metsch, Rodgers, 2014.
Counterexamples

- $x = 7$ in $PG(3, 4)$.
 (Govaerts, Penttila’05)

- In 2011 M. Rodgers constructed new Cameron – Liebler line classes for many odd values of q ($q < 200$) satisfying $q \equiv 1 \mod 4$ and $q \equiv 1 \mod 3$, having parameter $x = \frac{1}{2}(q^2 - 1)$.
 These new examples are made up of a union of orbits of a cyclic collineation group having order $q^2 + q + 1$.
 Rodgers, 2011.

- $x = 10$ in $PG(3, 5)$.
 G. and Metsch, 2013.

- a new infinite family in $PG(3, q)$, $q \equiv 5$ or $9 \mod 4$,
 $x = (q^2 - 1)/2 \Rightarrow x = (q^2 + 1)/2$.
 Momihara, Feng, Xiang, 2014.
 De Beule, Demeyer, Metsch, Rodgers, 2014.
Counterexamples

- $x = 7$ in $\text{PG}(3, 4)$.
 (Govaerts, Penttila’05)

- In 2011 M. Rodgers constructed new Cameron–Liebler line classes for many odd values of q ($q < 200$) satisfying $q \equiv 1 \text{ mod } 4$ and $q \equiv 1 \text{ mod } 3$, having parameter $x = \frac{1}{2}(q^2 - 1)$.
 These new examples are made up of a union of orbits of a cyclic collineation group having order $q^2 + q + 1$.
 Rodgers, 2011.

- $x = 10$ in $\text{PG}(3, 5)$.
 G. and Metsch, 2013.

- a new infinite family in $\text{PG}(3, q)$, $q \equiv 5$ or $9 \text{ mod } 4$,
 $x = (q^2 - 1)/2 \Rightarrow x = (q^2 + 1)/2$.
 Momihara, Feng, Xiang, 2014.
 De Beule, Demeyer, Metsch, Rodgers, 2014.
Bound on x

It seems that the right question is about the lower bound for x.

- $x \neq 3, 4$ if $q \geq 5$.
 (Penttila’91)

- $x \notin \{3, \ldots, \sqrt{q}\}$.
 (Bruen, Drudge’98)

- $x \notin \{3, \ldots, e(q)\}$ where $q + 1 + e(q)$ is the size of the smallest non-trivial blocking set in $PG(2, q)$.
 (Drudge’99)

- $x \notin \{3, \ldots, q\}$.
 (Metsch’10)

- $x > cq^{4/3}$ (with some constant c).
 (Metsch’14)

- about a half of values from $\{3, \ldots, \frac{q^2+1}{2}\}$ cannot be the parameters of Cameron-Liebler line classes.
 (G., Metsch’15)
Bound on x

It seems that the right question is about the lower bound for x.

- $x \not= 3, 4$ if $q \geq 5$.

 (Penttila’91)

- $x \not\in \{3, \ldots, \sqrt{q}\}$.

 (Bruen, Drudge’98)

- $x \not\in \{3, \ldots, e(q)\}$ where $q + 1 + e(q)$ is the size of the smallest non-trivial blocking set in $PG(2, q)$.

 (Drudge’99)

- $x \not\in \{3, \ldots, q\}$.

 (Metsch’10)

- $x > cq^{4/3}$ (with some constant c).

 (Metsch’14)

- about a half of values from $\{3, \ldots, \frac{q^2+1}{2}\}$ cannot be the parameters of Cameron-Liebler line classes.

 (G., Metsch’15)
Bound on x

It seems that the right question is about the lower bound for x.

- $x \neq 3, 4$ if $q \geq 5$.

 (Penttila’91)

- $x \notin \{3, \ldots, \sqrt{q}\}$.

 (Bruen, Drudge’98)

- $x \notin \{3, \ldots, e(q)\}$ where $q + 1 + e(q)$ is the size of the smallest non-trivial blocking set in $PG(2, q)$.

 (Drudge’99)

- $x \notin \{3, \ldots, q\}$.

 (Metsch’10)

- $x > cq^{4/3}$ (with some constant c).

 (Metsch’14)

- about a half of values from $\{3, \ldots, \frac{q^2+1}{2}\}$ cannot be the parameters of Cameron-Liebler line classes.

 (G., Metsch’15)
Bound on x

It seems that the right question is about the lower bound for x.

- $x \neq 3, 4$ if $q \geq 5$.
 (Penttila’91)

- $x \notin \{3, \ldots, \sqrt{q}\}$.
 (Bruen, Drudge’98)

- $x \notin \{3, \ldots, e(q)\}$ where $q + 1 + e(q)$ is the size of the smallest non-trivial blocking set in $PG(2, q)$.
 (Drudge’99)

- $x \notin \{3, \ldots, q\}$.
 (Metsch’10)

- $x > cq^{4/3}$ (with some constant c).
 (Metsch’14)

- About a half of values from $\{3, \ldots, \frac{q^2+1}{2}\}$ cannot be the parameters of Cameron-Liebler line classes.
 (G., Metsch’15)
Bound on x

It seems that the right question is about the lower bound for x.

- $x \neq 3, 4$ if $q \geq 5$.
 \[(\text{Penttila’91})\]

- $x \notin \{3, \ldots, \sqrt{q}\}$.
 \[(\text{Bruen, Drudge’98})\]

- $x \notin \{3, \ldots, e(q)\}$ where $q + 1 + e(q)$ is the size of the smallest non-trivial blocking set in $PG(2, q)$.
 \[(\text{Drudge’99})\]

- $x \notin \{3, \ldots, q\}$.
 \[(\text{Metsch’10})\]

- $x > cq^{4/3}$ (with some constant c).
 \[(\text{Metsch’14})\]

- About a half of values from $\{3, \ldots, \frac{q^2+1}{2}\}$ cannot be the parameters of Cameron-Liebler line classes.
 \[(\text{G., Metsch’15})\]
Bound on x

It seems that the right question is about the lower bound for x.

- $x \neq 3, 4$ if $q \geq 5$.
 (Penttila’91)

- $x \notin \{3, \ldots, \sqrt{q}\}$.
 (Bruen, Drudge’98)

- $x \notin \{3, \ldots, e(q)\}$ where $q + 1 + e(q)$ is the size of the smallest non-trivial blocking set in $PG(2, q)$.
 (Drudge’99)

- $x \notin \{3, \ldots, q\}$.
 (Metsch’10)

- $x > cq^{4/3}$ (with some constant c).
 (Metsch’14)

- about a half of values from $\{3, \ldots, \frac{q^2+1}{2}\}$ cannot be the parameters of Cameron-Liebler line classes.
 (G., Metsch’15)
Bound on x

It seems that the right question is about the lower bound for x.

- $x \neq 3, 4$ if $q \geq 5$. \hfill (Penttila’91)
- $x \not\in \{3, \ldots, \sqrt{q}\}$. \hfill (Bruen, Drudge’98)
- $x \not\in \{3, \ldots, e(q)\}$ where $q + 1 + e(q)$ is the size of the smallest non-trivial blocking set in $PG(2, q)$. \hfill (Drudge’99)
- $x \not\in \{3, \ldots, q\}$. \hfill (Metsch’10)
- $x > cq^{4/3}$ (with some constant c). \hfill (Metsch’14)
- about a half of values from $\{3, \ldots, \frac{q^2+1}{2}\}$ cannot be the parameters of Cameron-Liebler line classes. \hfill (G., Metsch’15)
Elliptic quadric, q odd

The elliptic quadric Q is the set of zeros of the equation

$$Q(x_0, x_1, x_2, x_3) = -ax_0^2 + x_1^2 + x_2x_3 = 0,$$

where a is any non-square in $GF(q)$.

- $q^2 + 1$ points;
- any line intersects Q in at most 2 points;
- there exists a unique tangent plane to any point of Q;
Bruen-Drudge family of C.-L. line classes

The set of $q + 1$ tangents to a point of Q can be partitioned into two groups, depending on whether there exists a point P on a tangent with $Q(P)$ a square or non-square in $GF(q)$.
Bruen-Drudge family of C.-L. line classes

A Cameron-Liebler line class of the Bruen-Drudge family consists of all secants to Q, and a half of tangents that all correspond to squares (or non-squares).
Lemma (Penttila)
Let \mathcal{L} be a Cameron-Liebler line class such that there exists an incident point-plane pair (P, π) satisfying the following conditions:

- $\text{Line}(\pi) \setminus \text{Star}(P) \not\subseteq \mathcal{L}$,
- $\text{Star}(P) \setminus \text{Line}(\pi) \subseteq \mathcal{L}$.

Then

$$\mathcal{L} \cup (\text{Line}(\pi) \setminus \text{Star}(P)) \setminus (\text{Star}(P) \setminus \text{Line}(\pi))$$

is a Cameron-Liebler line class \mathcal{L}' with the same parameter.
Lemma (Penttila)

Let \mathcal{L} be a Cameron-Liebler line class such that there exists an incident point-plane pair (P, π) satisfying the following conditions:

- $\text{Line}(\pi) \setminus \text{Star}(P) \not\subseteq \mathcal{L}$,
- $\text{Star}(P) \setminus \text{Line}(\pi) \subseteq \mathcal{L}$.

Then

$$
\mathcal{L} \cup (\text{Line}(\pi) \setminus \text{Star}(P)) \setminus (\text{Star}(P) \setminus \text{Line}(\pi))
$$

is a Cameron-Liebler line class \mathcal{L}' with the same parameter.
Switching: proof

\[\mathcal{L}' := \mathcal{L} \cup (\text{Line}(\pi) \setminus \text{Star}(P)) \setminus (\text{Star}(P) \setminus \text{Line}(\pi)) \]

Proof:
For any spread \(S \):
either

\[S \text{ contains a line on } P \text{ and in } \pi \Rightarrow S \cap \mathcal{L}' = S \cap \mathcal{L}, \]

or

\[S \text{ contains a line } \ell \in \pi, P \notin \ell, \text{ and a line } m \ni P, m \notin \pi \Rightarrow S' \cap \mathcal{L}' = (S' \cap \mathcal{L}) \cup \{m\} \setminus \{\ell\}. \]

Thus,

\[|S \cap \mathcal{L}'| = |S \cap \mathcal{L}| = x. \]
Switching: proof

\[\mathcal{L}' := \mathcal{L} \cup (\text{Line}(\pi) \setminus \text{Star}(P)) \setminus (\text{Star}(P) \setminus \text{Line}(\pi)) \]

Proof:
For any spread \(S \):
either

\[S \text{ contains a line on } P \text{ and in } \pi \Rightarrow S \cap \mathcal{L}' = S \cap \mathcal{L}, \]

or

\[S \text{ contains a line } \ell \in \pi, P \notin \ell, \text{ and a line } m \ni P, m \notin \pi \Rightarrow S \cap \mathcal{L}' = (S \cap \mathcal{L}) \cup \{m\} \setminus \{\ell\}. \]

Thus,

\[|S \cap \mathcal{L}'| = |S \cap \mathcal{L}| = x. \]
Switching: proof

\[\mathcal{L}' := \mathcal{L} \cup (\text{Line}(\pi) \setminus \text{Star}(P)) \setminus (\text{Star}(P) \setminus \text{Line}(\pi)) \]

Proof:
For any spread \(S \):
either

\[S \text{ contains a line on } P \text{ and in } \pi \Rightarrow S \cap \mathcal{L}' = S \cap \mathcal{L}, \]

or

\[S \text{ contains a line } \ell \in \pi, P \notin \ell, \text{ and a line } m \ni P, m \notin \pi \Rightarrow S \cap \mathcal{L}' = (S \cap \mathcal{L}) \cup \{m\} \setminus \{\ell\}. \]

Thus,

\[|S \cap \mathcal{L}'| = |S \cap \mathcal{L}| = x. \]
Switching: application

There exists an incident point-plane pair \((P, \pi)\) satisfying the following conditions:

- \(\text{Line}(\pi) \setminus \text{Star}(P) \not\subseteq \mathcal{L}\),
- \(\text{Star}(P) \setminus \text{Line}(\pi) \subseteq \mathcal{L}\).

Switching with respect to a point of \(Q\) and its tangent plane produces a new Cameron-Liebler line class with \(x = \frac{q^2+1}{2}\).
Switching ⇒ \(x = \frac{q^2+1}{2} \)

Lemma

Let \(\mathcal{L} \) be a Cameron-Liebler line class such that there exists an incident point-plane pair \((P, \pi)\) satisfying the following conditions:

- \(\line(\pi) \setminus \star(P) \not\subseteq \mathcal{L} \),
- \(\star(P) \setminus \line(\pi) \subseteq \mathcal{L} \).

Then the parameter \(x \) of \(\mathcal{L} \) is equal to \(\frac{q^2+1}{2} \).

In \(PG(3, 5) \) with \(x = \frac{q^2+1}{2} \):

- the Bruen-Drudge example;
- the switched Bruen-Drudge example;
- the Rodgers example;
Switching ⇒ \(x = \frac{q^2+1}{2} \)

Lemma

Let \(\mathcal{L} \) be a Cameron-Liebler line class such that there exists an incident point-plane pair \((P, \pi)\) satisfying the following conditions:

- \(\text{Line}(\pi) \setminus \text{Star}(P) \not\subseteq \mathcal{L} \),
- \(\text{Star}(P) \setminus \text{Line}(\pi) \subseteq \mathcal{L} \).

Then the parameter \(x \) of \(\mathcal{L} \) is equal to \(\frac{q^2+1}{2} \).

In \(PG(3, 5) \) with \(x = \frac{q^2+1}{2} \):

- the Bruen-Drudge example;
- the switched Bruen-Drudge example;
- the Rodgers example;
Let l be a line of $PG(3, q)$, \mathcal{L} a Cameron – Liebler line class. Consider all the points $P_i, i = 1, \ldots, q + 1$ that are on l, and all the planes $\pi_j, j = 1, \ldots, q + 1$ that contain l.

Define a square matrix T of order $q + 1$ whose (i, j)-element is $|\text{pencil}(P_i, \pi_j) \cap \mathcal{L} \setminus \{l\}|$.

We will call such matrix a pattern w.r.t. l.
Properties of patterns

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases}
0 & \text{if } l \notin \mathcal{L}, \\
1 & \text{if } l \in \mathcal{L},
\end{cases}$$

Then the following hold:

- $t_{ij} \in \mathbb{N}$, $0 \leq t_{ij} \leq q$ for all $i, j \in \{1, \ldots, q + 1\}$;
- $\sum_{i,j=1}^{q+1} t_{ij} = x(q + 1) + \chi(q^2 - 1)$;
- $\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q + 1)(t_{kl} + \chi), \forall k, l$;
- $\sum_{i,j=1}^{q+1} t_{ij}^2 = (x - \chi)^2 + q(x - \chi) + \chi q^2(q + 1)$.
Properties of patterns

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases}
0 & \text{if } l \notin \mathcal{L}, \\
1 & \text{if } l \in \mathcal{L},
\end{cases}$$

Then the following hold:

- $t_{ij} \in \mathbb{N}$, $0 \leq t_{ij} \leq q$ for all $i, j \in \{1, \ldots, q+1\}$;
- $\sum_{i,j=1}^{q+1} t_{ij} = x(q + 1) + \chi(q^2 - 1)$;
- $\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q + 1)(t_{kl} + \chi)$, $\forall k, l$;
- $\sum_{i,j=1}^{q+1} t_{ij}^2 = (x - \chi)^2 + q(x - \chi) + \chi q^2(q + 1)$.
Properties of patterns

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$
\chi := \begin{cases}
0 & \text{if } l \notin \mathcal{L}, \\
1 & \text{if } l \in \mathcal{L},
\end{cases}
$$

Then the following hold:

- $t_{ij} \in \mathbb{N}$, $0 \leq t_{ij} \leq q$ for all $i, j \in \{1, \ldots, q + 1\}$;

- $\sum_{i,j=1}^{q+1} t_{ij} = x(q + 1) + \chi(q^2 - 1)$;

- $\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q + 1)(t_{kl} + \chi)$, $\forall k, l$;

- $\sum_{i,j=1}^{q+1} t_{ij}^2 = (x - \chi)^2 + q(x - \chi) + \chi q^2(q + 1)$.
Properties of patterns

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$
\chi := \begin{cases}
0 & \text{if } l \notin \mathcal{L}, \\
1 & \text{if } l \in \mathcal{L},
\end{cases}
$$

Then the following hold:

- $t_{ij} \in \mathbb{N}$, $0 \leq t_{ij} \leq q$ for all $i, j \in \{1, \ldots, q + 1\}$;
- $\sum_{i,j=1}^{q+1} t_{ij} = x(q + 1) + \chi(q^2 - 1)$;
- $\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q + 1)(t_{kl} + \chi), \forall k, l$;
- $\sum_{i,j=1}^{q+1} t_{ij}^2 = (x - \chi)^2 + q(x - \chi) + \chi q^2(q + 1)$.

Some history and acknowledgements

- This family of Cameron-Liebler line classes together with the switching was found by Tim Penttila about 10 years ago, but it has not been published.

- With Ilia Matkin, we re-discovered this family during his visit at USTC (May of 2016).

- After that I realised that in 2015 during the CoCoA (Combinatorics and Comp. Algebra) conference organised by Anton Betten, Tim told me that there was a C.-L. line class arising from the Bruen-Drudge example by something like switching operation.

- Then we contacted Tim and decided to write this result jointly.

Many thanks to Anton for the CoCoA conference! Thank you for your attention!
Some history and acknowledgements

- This family of Cameron-Liebler line classes together with the switching was found by Tim Penttila about 10 years ago, but it has not been published.
- With Ilia Matkin, we re-discovered this family during his visit at USTC (May of 2016).
- After that I realised that in 2015 during the CoCoA (Combinatorics and Comp. Algebra) conference organised by Anton Betten, Tim told me that there was a C.-L. line class arising from the Bruen-Drudge example by something like switching operation.
- Then we contacted Tim and decided to write this result jointly.

Many thanks to Anton for the CoCoA conference! Thank you for your attention!
Some history and acknowledgements

- This family of Cameron-Liebler line classes together with the switching was found by Tim Penttila about 10 years ago, but it has not been published.
- With Ilia Matkin, we re-discovered this family during his visit at USTC (May of 2016).
- After that I realised that in 2015 during the CoCoA (Combinatorics and Comp. Algebra) conference organised by Anton Betten, Tim told me that there was a C.-L. line class arising from the Bruen-Drudge example by something like switching operation.
- Then we contacted Tim and decided to write this result jointly.

Many thanks to Anton for the CoCoA conference! Thank you for your attention!
Some history and acknowledgements

- This family of Cameron-Liebler line classes together with the switching was found by Tim Penttila about 10 years ago, but it has not been published.

- With Ilia Matkin, we re-discovered this family during his visit at USTC (May of 2016).

- After that I realised that in 2015 during the CoCoA (Combinatorics and Comp. Algebra) conference organised by Anton Betten, Tim told me that there was a C.-L. line class arising from the Bruen-Drudge example by something like switching operation.

- Then we contacted Tim and decided to write this result jointly.

Many thanks to Anton for the CoCoA conference!
Thank you for your attention!