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Codes in Hamming space

The Hamming space F n
2 is the n-dimensional vector space over

GF (2) with the Hamming metric

d(x , y) = |{i ∈ {1, . . . , n} : xi 6= yi}|.

A binary code is a collection of binary vectors (codewords) from
F n
2 , n is the length of the code.

The code distance of a binary code is minx ,y∈C :x 6=yd(x , y).

Hamming bound

Let C be a binary code of length n and code distance d. Then

|C | ≤ 2n/
∑

i=0,...,(d−1)/2

(ni ).
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Perfect codes

A code with minimum distance 3 is perfect (sometimes called
1-perfect) if it attains Hamming bound, i.e.

|C | = 2n/(n + 1).

These codes exist for length n = 2r − 1, size 2n−r and minimum
distance 3 for any r ≥ 2.

A Hamming code is a perfect code which is a linear subspace of F n
2 .
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The automorphism group of the code

An automorphism of F n
2 is an isometry of Hamming space.

Let π ∈ Sym(n) and x ∈ F n
2 .

Consider the transformation (x , π) of F n
2 :

(x , π) : y → x + (yπ−1(1), . . . , yπ−1(n)), y ∈ F n
2 .

(x , π) · (y , π′) = (x + π(y), ππ′).

The group of automorphisms of F n
2 w.t.r. · is

({(x , π) : x ∈ F n
2 , π ∈ Sym(n)}, ·)

The automorphism group of a code C is StabC (Aut(F n
2 )), denoted

by Aut(C ).
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Propelinear codes

[Rifa, Phelps, 2002], original definition by [Rifa, Huguet, Bassart,
1989]

A code C is called propelinear if there is a subgroup G < Aut(C )
acting sharply transitive (regularly) on the codewords, i.e.:

∀x , y ∈ C ∃!g ∈ G : g(x) = y

The automorphism group of a propelinear code can have many
regular subgroups.
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Example

C = F 2
2 = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Aut(C ) = {(x , π) : x ∈ C , π ∈ S2}

Regular subgroup 1

G = {(x , id) : x ∈ C}, (G , ·) is a regular subgroup of Aut(C ).
(G , ·) ∼= Z 2

2 .

Regular subgroup 2

G ′ = {((0, 0), id), ((1, 1), id), ((0, 1), (1, 2)), ((1, 0), (1, 2))}.
((0, 1), (1, 2))2 = ((1, 1), id), so G ′ has element of order 4.
(G ′, ·) ∼= Z4.

The code C has two nonisomorphic regular subgroups: G 6∼= G ′.
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Regular subgroups: record for perfect codes of length 16

[M., 2016]

The automorphism group of the extended Hamming code of length
16 has at least 2284 pairwise nonisomorphic regular subgroups.
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Propelinear perfect codes: existence

Linear codes [Hamming, 1949]
Translation-invariant perfect codes [Rifa, Pujol, 1997] (their
automorphism group has regular subgroups, isomorphic to
Z l
2 × Zm

4 )
Transitive Malugin codes, i.e. 1-step switchings of Hamming code
are propelinear [Borges, M., Rifa, Solov’eva, 2012]
Vasiliev and Mollard can be used to construct propelinear perfect
codes [Borges, M., Rifa, Solov’eva, 2012]
Potapov transitive extended perfect codes are propelinear [Borges,
M., Rifa, Solov’eva, 2013]
Propelinear Vasil’ev perfect codes from quadratic functions
[Krotov, Potapov, 2013]
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Preparata codes

Preparata code is a binary code of length n = 2m − 1 for even m,
m ≥ 4 of size 2n+1/(n + 1)2 with code distance 5.

Theorem [Semakov,Zinoviev, Zaitsev, 1971]

Any Preparata code is a subcode of a unique perfect code.

Constructions of Preparata codes

Baker, van Lint, Wilson, 1983 ([Dumer, 1976]): Preparata codes
that are subcodes of Hamming codes.
Hammons, Kumar, Calderbank, Sloane, Sole, 1994: Z4-linear
Preparata codes that are subcodes of Z4-linear perfect codes.

All known Preparata codes are propelinear.
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Main result

1. Let B be the binary primitive BCH code with designed distance
5 of length n = 2m − 1, m is odd.
2. Let P be a Preparata code of length n = 2m − 1, m is even
constructed by Dumer, Baker, van Lint, Wilson.
3. Let Γ be a Goethals subcode of Preparata code P.
4. Let C be a Hamming code with subcodes B or P of length
n = 2m − 1. 5. Let Π be a Z4-linear Preparata code, Σ be the
Z4-linear perfect code with subcode Π.
The codes above are propelinear. Moreover:
B ⊂ C , Γ ⊂ P ⊂ C ,Π ⊂ Σ.

Theorem

The following codes are propelinear:
C \ B,C \ P,P \ Γ,Σ \ Π.
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n = 2m − 1. 5. Let Π be a Z4-linear Preparata code, Σ be the
Z4-linear perfect code with subcode Π.
The codes above are propelinear. Moreover:
B ⊂ C , Γ ⊂ P ⊂ C ,Π ⊂ Σ.

Theorem

The following codes are propelinear:
C \ B,C \ P,P \ Γ,Σ \ Π.
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Example:The complement of Hamming code

Let C be a Hamming code of length n. Then F n
2 \ C is a

propelinear code. Sketch:

(i) C is a (prope)linear code. (C ,+) < Aut(C ), + is the addition
in F n

2 .

(ii)C is isomorphic to a cyclic code.There is H, H ∼= (F
log(n+1)
2 )∗,

H < Aut(C ), H is regular on the coordinates {1,. . . ,n} and cosets
(F n

2 /(C ,+)) \ C :

e1 + C , . . . , en + C , where ei = (0, . . . , 0, 1i , 0, . . . , 0).

(iii)H ∩ (C ,+) = ∅ and | < H, (C ,+) > | = |H||C |, so
< H, (C ,+) > is regular on the codewords of F n

2 \ C .
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