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A combinatorial object over a finite set 2 is a pair (22, O) where O
is an arbitrary relational structure on Q.

graphs and digraphs;

colored digraphs;

block-designs;

combinatorial maps;

etc
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A graph is a pair I = (€, E) where Q is a finite set of vertices and
E C Q x Q is the set of (directed) edges/arcs.

Graph Isomorphism.

M = (Q1, E1) =Ty = (Qo, Ey) iff there exists a bijection (an
isomorphism) f : Q1 — Q5 such that

Vai,fie: (of.8)e B & (a1,5)€ B

Aut(l'1) is the automorphism group of I'y.
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The Graph Isomorphism Problem (GIP).

GIP is to find the computational complexity of the problem:

GIP(I1,T2): given graphs I'; and I, test whether or not '] = I'y.

m Given graphs ['; and [, of order n, and a bijection
f : Q1 — Qo one can test in time O(n?) whether f is an
isomorphism.

m Therefore GIPENP.

m An exhaustive search of all the possible bijections runs in
exponential time O(n!).

m At present it is not known whether GIP€P.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time

exp(O((log n))).
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Cayley objects and regular subgroups.

Definition

A transitive subgroup of Sym(Q) is called regular iff it's point
stabilizer is trivial. An H-regular subgroup is a regular subgroup
isomorphic to H.

Theorem (Sabidussi)

A graph is isomorphic to a Cayley graph over a group H iff its
automorphism group contains an H-regular subgroup.

Definition

Any combinatorial object (H, O) is called a Cayley object if it is
Hg-invariant.

Theorem

Subidussi’'s Theorem is true for any combinatorial object.
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Cayley graphs isomorphism problem

CGIP

Given two Cayley graphs Cay(H, S) and Cay(H, T). Find whether
they are isomorphic.

CGIP for a group class

Given a class H of finite groups. Does there exists a polynomial
algorithm which solves a CGIP for groups in .

Cayley graph automorphism group

Given a Cayley graphs Cay(H, S). Find generators of
Aut(Cay(H, S)).

Cayley graph recognition problem

Given a graph I of order n and a finite group H, |H| = n. Find
whether [ is isomorphic to a Cayley graph over H.
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Cayley isomorphic graphs

Two Cayley graphs Cay(H, S) and Cay(H, T) are Cayley
isomorphic, notation Cay(H, S) =c,, Cay(H, T), iff

reaunry Cay(H,S)" = Cay(H, T) <= 3reau(m) S =T.

Cay(H,S) =cay Cay(H, T) = Cay(H,S) = Cay(H, T)

Example
Take H =7y x Z4,S = H\ K, T = H\ C where K, C are order 4
subgroups, K = Zy X Zy, C = Z4. Then

Cay(H7 5) = K4,4 = Cay(H7 T)
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Cl-property

A subset S C H of group H is called a Cl-subset if for any subset
T C H the following equivalence holds

Cay(H,S) Zcay Cay(H, T) < Cay(H,S) = Cay(H, T)

ClG-groups

A group H is called a Cl-group with respect to graphs, CIG-group
for short, if any subset of H is a Cl-subset.
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Isomorphism problem for circulant graphs

Adam'’s conjecture (1967): Z, is a Cl-group for every n
Cay(Zn,S) = Cay(Zn, T) <= Imez: T = mS.

Minimal Counterexample (Elspas and Turner, 1970).

6 5 6 5
7 4 7 4
0 3 0 3
1 2 1 2
(2,6)(3,7)

Cay(Zs,{1,2,5}) ————— Cay(Zs,{1,6,5})
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Adim’s conjecture fails if n is divisible by 8 or by odd square.

Adim’s conjecture is true if

n is a prime - Elspas & Parsons;
n=2p,3p,4p - Babai 1977;

n = pq,p # q are primes - C. Godsil (1977), Klin & Pdschel
(1978), Alspach & Parsons (1979)

P4lfy’s correction of Adém's conjecture (1987):

Adam conjecture is true if n is a square free or twice square free
number.
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Theorem (Palfy, 1987)

Adém'’s conjecture is true if n = 4 or gcd(n, p(n)) = 1.

Palfy’s result holds for ANY type of cyclic combinatorial objects.

Theorem (Muzychuk, 1995-97)

The corrected Addm’s conjecture is true.
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Cl-groups w.r.t. digraphs

During last 40 years the classification of ClG-groups was studied by
many researches: B. Alspach, L.Babai, M.Conder, E. Dobson, B.
Elspas, V.N.Egorov, P.Frankl, C. Godsil, M. Hirasaka, M. Klin, I.
Kovacs, C.H.Li, Z.P. Lu, A.l.Markov, L. Nowitz, T.D. Parsons, P.
Palfy, R. Poschel, C. Praeger, P. Spiga, G. Somlai, J. Turner.

Theorem (necessary conditions to be a ClG-group)
If H is a Cl-group w.r.t. digraphs, then H is a coprime product of
groups from the following list:

Zy, 74, Qs,Aq,E(M,2),E(M,3),E(M,4).

where M is a direct product of elementary abelian groups of odd
order.



Cl-groups w.r.t. digraphs (sufficient conditions)

The following groups are Cl-groups w.r.t. digraphs

Z,, where n is square-free or twice square-free number;
75, e < 4 and Z3;

Zf, X Zq,Zg X Zq where p and q are distinct primes;
D2p, F3p, Zp X Za;

s, As.

1. C.H. Li, On isomorphisms of finite Cayley graphs - survey, DM
256 (2002),

2. C.H. Li, Z.P. Lu, P. Palfy, Further restrictions on the struture of
finite Cl-groups, JACO 26 (2007).
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Open Problems

Given a prime p, find a minimal n(p) such that Z7 is not a
CIG-group, n(p) > 5, n(p) < 2p + 3 (G. Somlai);

n(2) = 6 (L. Nowitz), 6 < n(3) < 8 (P. Spiga).
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Open Problems

]

BEooME

Given a prime p, find a minimal n(p) such that Z7 is not a
CIG-group, n(p) > 5, n(p) < 2p + 3 (G. Somlai);

n(2) = 6 (L. Nowitz), 6 < n(3) < 8 (P. Spiga).

Does there exists ng such that Z° is not a ClG-group for any
prime p?

Is Z‘z a CIG-group?

Is a coprime product of CIG-groups a CIG-group?

Is a dihedral group of a square-free order a ClIG-group?

Find a polynomial algorithm which solves a recognition
problem for Cayley graphs over Z'%.
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Non-Cl groups: the cyclic case

n = p?, Alspach & Parsons, 1978;

n=p™ p>2, Klin & Pdéschel, 1978;

n = 2", Muzychuk & Poschel, 1999;

@A arbitrary n, Evdokimov & Ponomarenko - 2003, Muzychuk,

2004.

An isomorphism problem for arbitrary cyclic combinatorial objects
of orders p? and pgq was solved by Job, Huffman and Pless in
1993,1996.
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A subset P C Sym(H) is called a solving set for a Cayley digraph
Cay(H, S) iff

VTgHCay(H, 5) = Cay(H, T) <—

< dpepCay(H,S)? = Cay(H, T).

A solving set of minimal cardinality is called a minimal solving set.
A set of permutations P C Sym(H) is called solving set for the
group H iff it is a solving set for all Cayley digraphs over H.

A group H is a CIG-group iff Aut(H) is a solving set for H.
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"Individual” solving set

Theorem (Babai, 1977)

A subset S C H is a Cl-subset iff any regular subgroup of Aut(Cay(H, S))
isomorphic to H is conjugate to Hg in Aut(Cay(H, S)).

Definition
Let G < Sym(H) be an arbitrary group. A set F;,i € | of H-regular

subgroups of G is called an H-base of G iff any H-regular subgroup of G
is conjugate in G to exactly one F;.

Theorem

Let S be an arbitrary subset of H. Let F;,i € | be an H-base of the
group G := Aut(Cay(H, S))). Denote by f; € Sym(H) permutations such
that Hg = F/',i € I. Then Ui, f; Aut(H) is a solving set for Cay(H, S).
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Example

Let H = Zg and I := Cay(Zs, {1,2,5});
Then G := Aut(Cay(Zs, {1,2,5})) = (p) x (1) where
xP =x+4+1,x" =b5x;
G contains exactly two regular cyclic subgroups G:
(Zg)r = (p) and
(0),x? =bx+1 = 0=1(0,1,6,7,4,5,2,3)
(p) and (o) is a Zg-base of G;
(p) = (0)2OET) — Aut(Zg) U (2,6)(3,7) Aut(Zg) is a
solving set for Cay(Zs, {1,2,5}).
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How to construct a solving set for all Cayley graphs over H

Find the automorphism groups of all Cayley graphs over H,

Too many graphs - 2|H‘_1;—(

Different graphs may have the same automorphism group!
If |[H| is prime, then the number of distinct automorphism
groups is less than |H]|.

Klin-Poschel approach - use the method of Schur rings to find
all possible automorphism groups.
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Automorphism groups of Cayley graphs

Let G = Aut(Cay(H, S)) and S = {So, S1, ..., Su} be the set of
orbits of the point stabilizer Ge. Then

So = {e};
S is a union of some orbits S; € S;
G = N, Aut(Cay(H, S;)) =: Aut(S).

Theorem, |. Schur (1933)

The partition S gives rise to a subalgebra of a group algebra Q[H].

These special partitions will be called Schur partitions of H.
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Schur rings (algebras)

Definition (Wielandt)

Let SC H. An element S =) _ss € Q[H] is called a simple
quantity. We abbreviate {g} as g .

Schur partitions
A partitition S of a group H is called Schur partition if it satisfies
the following conditions

{e} €S;

S = S where S(-1) .= {S(D| S € S}

the linear span S := (S)scs is a subalgebra of of Q[H]

A subalgebra A of Q[H] arising in this way is called a Schur
algebra/ring.
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Klin-Poschel scheme for a solution of IPCG.

Find the set & of all Schur partitions of H;
For each S € & find the automorphism group G := Aut(S).
Then
Find an H-base of G: Fq, ..., Fg;
Find f; € Sym(H) with Hr = F i =1, ..., k;
Set P(S) := UL, f; Aut(H);
Take [Jgcs P(S) as a solving set for Cayley digraphs over H.

This scheme successfully worked for Z,, if n is a power of an odd
prime or a product of two distinct primes.



Example: solving set for circulant graphs of order 8

The following list was generated by the computer program COCO
(thanks to Misha Klin).

{0}, {1,2,3,4,5,6,7};

{0}, {1,3,5,7}, {2,6,4};

{0}, {1,3,5,7,2,6}, {4};

{0}, {1,3,5,7}, {2,6}, {4};

{0}, {1,3,5,7}, {2}, {6}, {4};

{0}, {1,5}, {3, 7}, {2}, {6}, {4}:

{0}, {1,5}, {3, 7}, {2,6}, {4}:

{0}, {1,3}, {5,7}, {2,6}, {4};

{0}, {1,7}, {3,5}, {2,6}, {4};

{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7};



N S-partition S Aut. cyclic Solving
group bases set

1 107, {1,2.3,4,5,6,7} S ) Z

2 {0}, {1,3,5,7}, {2,6,4} 515 {p) Z:

3 {0}, {1,3.5,7,2,6}, {4} Si1 S (p) Z:

4 {0}7 {1, 3’577}7 {276}’ {4} S2 ! 52 l S2 <p> Z§

5 {0}, {1,3,5,7}, {2}, {6}, {4} $2 174 {p) Zg

6 {O}v {1’5}7 {377}7 {2}’ {6}’ {4}’ Zg.2> <P>, <U> Zg UaZB

7 {O}a {1a 5}7 {37 7}7 {276}7 {4} Zg 52 <P> Z;

8 {0}7 {1’3}’ {5’7}7 {276}7 {4} ZLg.Z <P> Zg

9 {O}a {177}7 {375}7 {276}7 {4} D16 <P> ZLg

10 | {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} Zg () Zg

Here o = (2,6)(3,7). Thus Z§ U aZj is a solving set for circulant graphs
over Zg.
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Solution of the isomorphism problem for circulant digraphs.

Theorem (Klin-Pdschel, 1978)

Let n be an odd prime power. Then

the number of Schur rings over Z,, is bounded by
nC,2 < C < 25;

there exists an efficiently constructed solving set P, for
circulant graphs of order ns.t. |P,| < n“p(n)

Theorem (Muzychuk-Pdschel, 1999)

Let n = 2™. Then there exists an efficiently constructed solving set
P,, for circulant graphs of order ns.t. |P,| < n“p(n).

But if n is a square-free number, the number of Schur partitions
growes exponentially!
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Control of H-bases

Definition

Let Hr < X <Y < Sym H be arbitrary subgroups. We say that X
controls H-bases of Y, notation X <y Y/, if there exists an H-base
of X which contains an H-base of Y.

Proposition

The following are equivalent
XZ2nY,
for any H-regular subgroup F < Y there exists y € Y s.t.
F¥ <X,
any H-base of X contains an H-base of Y.

Proposition

The relation <y is a partial order on the lattice [Hg, Sym(H)].
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=n-minimal subgroups.

Proposition

If H is a p-group, then every <y-minimal subgroup of Sym H is a
p-group too.

Example. The symmetric group Sym(8) has two <z,-minimal
subgroups: Zg and Zg x (o) where o(x) = 5x.

Theorem (Palfy, 1987)

If H is a cyclic group of order n, then Hg is a unique <y-minimal
subgroup iff n =4 or gcd(n, p(n)) = 1.

Theorem (M., 1999)

If H is cyclic, then each <y-minimal subgroup of X € [Hg, Sym H]
is solvable and m(X) = 7(H).



Isomorphism problem for cyclic combinatorial objects

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains
a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of
Schur rings.



Isomorphism problem for cyclic combinatorial objects

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains
a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of
Schur rings.

Theorem (M. 2004)

Let n= pi™ - ...- p,'* be a decomposition of n into a product of
prime powers. Denote by P m; a solving set for colored circulant

digraphs over Z m; . Then the set P, := P mLX e X P ok is a
solving set for coIored Cayley digraphs over L. In partlcular
|Pal < n€(n).



Non-graphical cyclic combinatorial objects

Theorem (M., 2011)

The set P, is also a solving set for a semisimple cyclic codes of
length n. In other words, two semisimple cyclic codes C, D < FFg
are permutation equivalent iff there exists g € P, s.t. C& = D.



Non-graphical cyclic combinatorial objects

Theorem (M., 2011)

The set P, is also a solving set for a semisimple cyclic codes of
length n. In other words, two semisimple cyclic codes C, D < FFg
are permutation equivalent iff there exists g € P, s.t. C& = D.

Theorem (I. Kovacs, D. Marusi¢ and M. Muzychuk, 2015)

A cyclic group is a Cl-group with respect to balanced
configurations.
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Non-graphical combinatorial objects: Cayley maps

Definition
A Cayley map is a triple M(H, S, p) where
H is a finite group;
S C H is a symmetric subset of H;
p € Sym(S) is a rotation of S (full cycle permutation).

A rotation p determines a 2-cell embeding of the Cayley graph
Cay(H, S) into a surface.

Example: H = Zy x Z»,S = {01,10,11}, p = (01, 10, 11).




Map isomorphisms

Two Cayley maps M(H, S, p) and M(H,S’, p") are isomorphic iff
there exists a bijection f € Sym(H) s.t.

{(h,sh,p(s)h)|s € S,h e HY ={(h,sh,p'(s)h)|s € S',he H}.

Cayley isomorphism
Two Cayley maps M(H, S, p) and M(H,S’, p') are Cayley
isomorphic iff there exists f € Aut(H) s.t. ST =S and fsp = p'fs.

Classify all finite groups with Cl-property with respect to maps.




Cl-groups with respect to maps

Theorem (M and G. Somlai, 2015)
Let H be a Cl-group with respect to Cayley maps. Then H is
isomorphic to one of the following groups

LY X Ly Zg X L, Lg X Ly, Qg X Lip;

Dy X Zpe,e =1,2,3.

where m is a square-free odd number.



Cl-groups with respect to maps

Theorem (M and G. Somlai, 2015)

Let H be a Cl-group with respect to Cayley maps. Then H is
isomorphic to one of the following groups

Z§ X Ly Ly X Ly Lg X L, Qg X Lip;
Do 30 Do, e = 1,2, 3.

where m is a square-free odd number.

Theorem (M and G. Somlai, 2015)

The following groups are Cl with respect to Cayley maps.

L X Logy Loy X Ly, L X Q.



