Isomorphism problem for Cayley combinatorial objects

M. Muzychuk,

Netanya Academic College, Israel

August, 2016, Novosibirsk, Russia

A combinatorial object over a finite set Ω is a pair (Ω, O) where O is an arbitrary relational structure on Ω .

1 graphs and digraphs;

- graphs and digraphs;
- 2 colored digraphs;

- 1 graphs and digraphs;
- 2 colored digraphs;
- 3 block-designs;

- 1 graphs and digraphs;
- 2 colored digraphs;
- Block-designs;
- 4 combinatorial maps;

- graphs and digraphs;
- 2 colored digraphs;
- Block-designs;
- 4 combinatorial maps;
- 5 etc

Graphs

A graph is a pair $\Gamma = (\Omega, E)$ where Ω is a finite set of vertices and $E \subset \Omega \times \Omega$ is the set of (directed) edges/arcs.

Graphs

A graph is a pair $\Gamma = (\Omega, E)$ where Ω is a finite set of vertices and $E \subset \Omega \times \Omega$ is the set of (directed) edges/arcs.

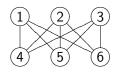
Graph Isomorphism.

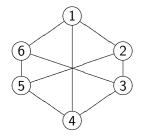
 $\Gamma_1=(\Omega_1,E_1)\cong\Gamma_2=(\Omega_2,E_2)$ iff there exists a bijection (an isomorphism) $f:\Omega_1\to\Omega_2$ such that

$$\forall \alpha_1, \beta_1 \in \Omega_1 : (\alpha_1^f, \beta_1^f) \in E_2 \Leftrightarrow (\alpha_1, \beta_1) \in E_1.$$

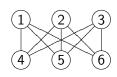
 $Aut(\Gamma_1)$ is the automorphism group of Γ_1 .

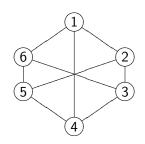
Example





Example

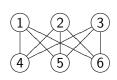


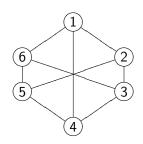


An isomorphism

$$f = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 5 & 2 & 4 & 6 \end{array}\right)$$

Example





An isomorphism

$$f = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 5 & 2 & 4 & 6 \end{array}\right)$$

$$\mathsf{Aut}(\Gamma) = (S_3 \times S_3).S_2.$$

GIP is to find the computational complexity of the problem:

GIP is to find the computational complexity of the problem:

 ${\sf GIP}(\Gamma_1,\Gamma_2)\!\colon \text{ given graphs }\Gamma_1 \text{ and }\Gamma_2 \text{ test whether or not }\Gamma_1\cong \Gamma_2.$

GIP is to find the computational complexity of the problem:

 $\mathsf{GIP}(\Gamma_1,\Gamma_2)\text{: given graphs }\Gamma_1\text{ and }\Gamma_2\text{ test whether or not }\Gamma_1\cong\Gamma_2.$

• Given graphs Γ_1 and Γ_2 of order n, and a bijection $f:\Omega_1\to\Omega_2$ one can test in time $O(n^2)$ whether f is an isomorphism.

GIP is to find the computational complexity of the problem:

 $\mathsf{GIP}(\Gamma_1,\Gamma_2)$: given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1\cong\Gamma_2$.

- Given graphs Γ_1 and Γ_2 of order n, and a bijection $f:\Omega_1\to\Omega_2$ one can test in time $O(n^2)$ whether f is an isomorphism.
- Therefore GIP∈NP.

GIP is to find the computational complexity of the problem:

 $\mathsf{GIP}(\Gamma_1,\Gamma_2)\text{: given graphs }\Gamma_1\text{ and }\Gamma_2\text{ test whether or not }\Gamma_1\cong\Gamma_2.$

- Given graphs Γ_1 and Γ_2 of order n, and a bijection $f:\Omega_1\to\Omega_2$ one can test in time $O(n^2)$ whether f is an isomorphism.
- Therefore GIP∈NP.
- An exhaustive search of all the possible bijections runs in exponential time O(n!).

GIP is to find the computational complexity of the problem:

 $\mathsf{GIP}(\Gamma_1, \Gamma_2)$: given graphs Γ_1 and Γ_2 test whether or not $\Gamma_1 \cong \Gamma_2$.

- Given graphs Γ_1 and Γ_2 of order n, and a bijection $f:\Omega_1\to\Omega_2$ one can test in time $O(n^2)$ whether f is an isomorphism.
- Therefore GIP∈NP.
- An exhaustive search of all the possible bijections runs in exponential time O(n!).
- At present it is not known whether $GIP \in \mathbf{P}$.

GIP is to find the computational complexity of the problem:

 $\mathsf{GIP}(\Gamma_1,\Gamma_2)\text{: given graphs }\Gamma_1\text{ and }\Gamma_2\text{ test whether or not }\Gamma_1\cong\Gamma_2.$

- Given graphs Γ_1 and Γ_2 of order n, and a bijection $f:\Omega_1\to\Omega_2$ one can test in time $O(n^2)$ whether f is an isomorphism.
- Therefore GIP∈NP.
- An exhaustive search of all the possible bijections runs in exponential time O(n!).
- At present it is not known whether $GIP \in \mathbf{P}$.

Theorem (L.Babai, 2015).

The isomorphism of *n*-vertex graphs can be tested in time $\exp(O((\log n)^c))$.

Definition

A Cayley graph over a finite group H defined by a connection set $S \subseteq H$ has H as a set of nodes and arc set

Cay
$$(H, S) := \{(x, y) | xy^{-1} \in S\}.$$

Definition

A Cayley graph over a finite group H defined by a connection set $S \subseteq H$ has H as a set of nodes and arc set

Cay
$$(H, S) := \{(x, y) | xy^{-1} \in S\}.$$

A circulant graph is a Cayley graph over a cyclic group.

Definition

A Cayley graph over a finite group H defined by a connection set $S \subseteq H$ has H as a set of nodes and arc set

Cay
$$(H, S) := \{(x, y) | xy^{-1} \in S\}.$$

A circulant graph is a Cayley graph over a cyclic group.

Proposition

1 For any $h \in H$ the permutation $h_R : x \mapsto xh$ is an automorphism of Cay(H, S);

Definition

A Cayley graph over a finite group H defined by a connection set $S \subseteq H$ has H as a set of nodes and arc set

Cay
$$(H, S) := \{(x, y) | xy^{-1} \in S\}.$$

A circulant graph is a Cayley graph over a cyclic group.

Proposition

- **1** For any $h \in H$ the permutation $h_R : x \mapsto xh$ is an automorphism of Cay(H, S);
- 2 The set $H_R := \{h_R \mid h \in H\}$ is a regular subgroup of Aut(Cay(S, H)).

Definition

A Cayley graph over a finite group H defined by a connection set $S \subseteq H$ has H as a set of nodes and arc set

Cay
$$(H, S) := \{(x, y) | xy^{-1} \in S\}.$$

A circulant graph is a Cayley graph over a cyclic group.

Proposition

- **1** For any $h \in H$ the permutation $h_R : x \mapsto xh$ is an automorphism of Cay(H, S);
- 2 The set $H_R := \{h_R \mid h \in H\}$ is a regular subgroup of Aut(Cay(S, H)).

Cayley objects and regular subgroups.

Definition

A transitive subgroup of $\operatorname{Sym}(\Omega)$ is called regular iff it's point stabilizer is trivial. An H-regular subgroup is a regular subgroup isomorphic to H.

Cayley objects and regular subgroups.

Definition

A transitive subgroup of $\operatorname{Sym}(\Omega)$ is called regular iff it's point stabilizer is trivial. An H-regular subgroup is a regular subgroup isomorphic to H.

Theorem (Sabidussi)

A graph is isomorphic to a Cayley graph over a group H iff its automorphism group contains an H-regular subgroup.

Cayley objects and regular subgroups.

Definition

A transitive subgroup of $\operatorname{Sym}(\Omega)$ is called regular iff it's point stabilizer is trivial. An H-regular subgroup is a regular subgroup isomorphic to H.

Theorem (Sabidussi)

A graph is isomorphic to a Cayley graph over a group H iff its automorphism group contains an H-regular subgroup.

Definition

Any combinatorial object (H, O) is called a Cayley object if it is H_R -invariant.

Theorem

Subidussi's Theorem is true for any combinatorial object.

CGIP

Given two Cayley graphs Cay(H, S) and Cay(H, T). Find whether they are isomorphic.

CGIP

Given two Cayley graphs Cay(H, S) and Cay(H, T). Find whether they are isomorphic.

CGIP for a group class

Given a class $\mathcal H$ of finite groups. Does there exists a polynomial algorithm which solves a CGIP for groups in $\mathcal H$.

CGIP

Given two Cayley graphs Cay(H, S) and Cay(H, T). Find whether they are isomorphic.

CGIP for a group class

Given a class \mathcal{H} of finite groups. Does there exists a polynomial algorithm which solves a CGIP for groups in \mathcal{H} .

Cayley graph automorphism group

Given a Cayley graphs Cay(H, S). Find generators of Aut(Cay(H, S)).

CGIP

Given two Cayley graphs Cay(H, S) and Cay(H, T). Find whether they are isomorphic.

CGIP for a group class

Given a class $\mathcal H$ of finite groups. Does there exists a polynomial algorithm which solves a CGIP for groups in $\mathcal H$.

Cayley graph automorphism group

Given a Cayley graphs Cay(H, S). Find generators of Aut(Cay(H, S)).

Cayley graph recognition problem

Given a graph Γ of order n and a finite group H, |H| = n. Find whether Γ is isomorphic to a Cayley graph over H.

Definition

Two Cayley graphs Cay(H, S) and Cay(H, T) are Cayley isomorphic, notation $Cay(H, S) \cong_{Cay} Cay(H, T)$, iff

$$\exists_{f \in Aut(H)} \ Cay(H, S)^f = Cay(H, T)$$

Definition

Two Cayley graphs Cay(H, S) and Cay(H, T) are Cayley isomorphic, notation $Cay(H, S) \cong_{Cay} Cay(H, T)$, iff

$$\exists_{f \in Aut(H)} \ Cay(H, S)^f = Cay(H, T) \iff \exists_{f \in Aut(H)} \ S^f = T.$$

Definition

Two Cayley graphs Cay(H, S) and Cay(H, T) are Cayley isomorphic, notation $Cay(H, S) \cong_{Cay} Cay(H, T)$, iff

$$\exists_{f \in Aut(H)} \ Cay(H, S)^f = Cay(H, T) \iff \exists_{f \in Aut(H)} \ S^f = T.$$

Observation

$$Cay(H, S) \cong_{Cay} Cay(H, T) \implies Cay(H, S) \cong Cay(H, T)$$

Definition

Two Cayley graphs Cay(H, S) and Cay(H, T) are Cayley isomorphic, notation $Cay(H, S) \cong_{Cay} Cay(H, T)$, iff

$$\exists_{f \in Aut(H)} \ Cay(H, S)^f = Cay(H, T) \iff \exists_{f \in Aut(H)} \ S^f = T.$$

Observation

$$Cay(H, S) \cong_{Cay} Cay(H, T) \implies Cay(H, S) \cong Cay(H, T)$$

Example

Take $H = \mathbb{Z}_2 \times \mathbb{Z}_4$, $S = H \setminus K$, $T = H \setminus C$ where K, C are order 4 subgroups, $K \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, $C \cong \mathbb{Z}_4$. Then $Cay(H, S) \cong K_{4,4} \cong Cay(H, T)$.

CI-property

CI-property

CI-property

A subset $S \subseteq H$ of group H is called a CI-subset if for any subset $T \subseteq H$ the following equivalence holds

$$\mathsf{Cay}(H,S) \cong_{\mathit{Cay}} \mathsf{Cay}(H,T) \iff \mathsf{Cay}(H,S) \cong \mathsf{Cay}(H,T)$$

CI-property

CI-property

A subset $S \subseteq H$ of group H is called a CI-subset if for any subset $T \subseteq H$ the following equivalence holds

$$Cay(H, S) \cong_{Cay} Cay(H, T) \iff Cay(H, S) \cong Cay(H, T)$$

CIG-groups

A group H is called a CI-group with respect to graphs, CIG-group for short, if any subset of H is a CI-subset.

Ádám's conjecture (1967): \mathbb{Z}_n is a CI-group for every n

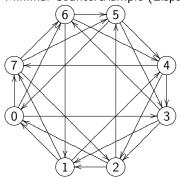
Ádám's conjecture (1967): \mathbb{Z}_n is a CI-group for every n

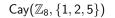
 $\mathsf{Cay}(\mathbb{Z}_n,S) \cong \mathsf{Cay}(\mathbb{Z}_n,T) \iff \exists_{m \in \mathbb{Z}_n^*} T = mS.$

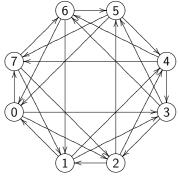
Adám's conjecture (1967): \mathbb{Z}_n is a CI-group for every n

$$Cay(\mathbb{Z}_n, S) \cong Cay(\mathbb{Z}_n, T) \iff \exists_{m \in \mathbb{Z}_n^*} T = mS.$$

Minimal Counterexample (Elspas and Turner, 1970).







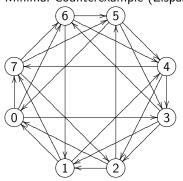
 $\mathsf{Cay}(\mathbb{Z}_8,\{1,6,5\}), \quad \mathsf{In} \quad \mathsf{$

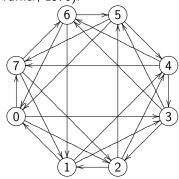
Adám's conjecture (1967): \mathbb{Z}_n is a CI-group for every n

(2,6)(3,7)

$$Cay(\mathbb{Z}_n, S) \cong Cay(\mathbb{Z}_n, T) \iff \exists_{m \in \mathbb{Z}_n^*} T = mS.$$

Minimal Counterexample (Elspas and Turner, 1970).





$$\mathsf{Cay}(\mathbb{Z}_8,\{1,2,5\})$$

Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Ádám's conjecture fails if n is divisible by 8 or by odd square.

Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Ádám's conjecture fails if n is divisible by 8 or by odd square.

Ádám's conjecture is true if

- 1 n is a prime Elspas & Parsons;
- n = 2p, 3p, 4p Babai 1977;
- 3 $n=pq, p \neq q$ are primes C. Godsil (1977), Klin & Pöschel (1978), Alspach & Parsons (1979)

Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Ádám's conjecture fails if n is divisible by 8 or by odd square.

Ádám's conjecture is true if

- 1 n is a prime Elspas & Parsons;
- n = 2p, 3p, 4p Babai 1977;
- 3 $n=pq, p \neq q$ are primes C. Godsil (1977), Klin & Pöschel (1978), Alspach & Parsons (1979)

Pálfy's correction of Ádám's conjecture (1987):

Ádám conjecture is true if n is a square free or twice square free number.

Theorem (Pálfy, 1987)

Ádám's conjecture is true if n = 4 or $gcd(n, \varphi(n)) = 1$.

Theorem (Pálfy, 1987)

Ádám's conjecture is true if n = 4 or $gcd(n, \varphi(n)) = 1$.

Pálfy's result holds for ANY type of cyclic combinatorial objects.

Theorem (Pálfy, 1987)

Ádám's conjecture is true if n = 4 or $gcd(n, \varphi(n)) = 1$.

Pálfy's result holds for ANY type of cyclic combinatorial objects.

Theorem (Muzychuk, 1995-97)

The corrected Ádám's conjecture is true.

Cl-groups w.r.t. digraphs

Cl-groups w.r.t. digraphs

During last 40 years the classification of CIG-groups was studied by many researches: B. Alspach, L.Babai, M.Conder, E. Dobson, B. Elspas, V.N.Egorov, P.Frankl, C. Godsil, M. Hirasaka, M. Klin, I. Kovacs, C.H.Li, Z.P. Lu, A.I.Markov, L. Nowitz, T.D. Parsons, P. Pálfy, R. Pöschel, C. Praeger, P. Spiga, G. Somlai, J. Turner.

Theorem (necessary conditions to be a CIG-group)

If H is a CI-group w.r.t. digraphs, then H is a coprime product of groups from the following list:

$$\mathbb{Z}_p^e$$
, \mathbb{Z}_4 , Q_8 , A_4 , $E(M, 2)$, $E(M, 3)$, $E(M, 4)$.

where M is a direct product of elementary abelian groups of odd order.

CI-groups w.r.t. digraphs (sufficient conditions)

Theorem

The following groups are Cl-groups w.r.t. digraphs

- **I** \mathbb{Z}_n where n is square-free or twice square-free number;
- $\mathbb{Z}_p^e, e \leq 4 \text{ and } \mathbb{Z}_2^5;$
- $\mathbb{Z}_p^2 \times \mathbb{Z}_q, \mathbb{Z}_p^3 \times \mathbb{Z}_q$ where p and q are distinct primes;
- $Q_8, A_4.$
- 1. C.H. Li, On isomorphisms of finite Cayley graphs survey, DM 256 (2002),
- 2. C.H. Li, Z.P. Lu, P. Pálfy, Further restrictions on the struture of finite Cl-groups, JACO 26 (2007).

I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group,

I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group, $n(p) \geq 5$,

I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group, $n(p) \geq 5$, n(p) < 2p + 3 (G. Somlai);

I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group, $n(p) \geq 5$, n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \leq n(3) \leq 8$ (P. Spiga).

- I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group, $n(p) \geq 5$, n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \leq n(3) \leq 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a CIG-group for any prime p?

- I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group, $n(p) \geq 5$, n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \leq n(3) \leq 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a CIG-group for any prime p?
- 3 Is \mathbb{Z}_p^5 a CIG-group?

- I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group, $n(p) \geq 5$, n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \leq n(3) \leq 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a CIG-group for any prime p?
- 3 Is \mathbb{Z}_p^5 a CIG-group?
- 4 Is a coprime product of CIG-groups a CIG-group?

- I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group, $n(p) \geq 5$, n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \leq n(3) \leq 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a CIG-group for any prime p?
- Is \mathbb{Z}_p^5 a CIG-group?
- 4 Is a coprime product of CIG-groups a CIG-group?
- **Is a dihedral group of a square-free order a CIG-group?**

- I Given a prime p, find a minimal n(p) such that \mathbb{Z}_p^n is not a CIG-group, $n(p) \geq 5$, n(p) < 2p + 3 (G. Somlai); n(2) = 6 (L. Nowitz), $6 \leq n(3) \leq 8$ (P. Spiga).
- 2 Does there exists n_0 such that $\mathbb{Z}_p^{n_0}$ is not a CIG-group for any prime p?
- Is \mathbb{Z}_p^5 a CIG-group?
- 4 Is a coprime product of CIG-groups a CIG-group?
- 5 Is a dihedral group of a square-free order a CIG-group?
- **6** Find a polynomial algorithm which solves a recognition problem for Cayley graphs over \mathbb{Z}_p^2 .

1 $n = p^2$, Alspach & Parsons, 1978;

- 1 $n = p^2$, Alspach & Parsons, 1978;
- **2** $n = p^m, p > 2$, Klin & Pöschel, 1978;

- **11** $n = p^2$, Alspach & Parsons, 1978;
- $p = p^m, p > 2$, Klin & Pöschel, 1978;
- **3** $n = 2^m$, Muzychuk & Pöschel, 1999;

- 1 $n = p^2$, Alspach & Parsons, 1978;
- **2** $n = p^m, p > 2$, Klin & Pöschel, 1978;
- $n = 2^m$, Muzychuk & Pöschel, 1999;
- 4 arbitrary *n*, Evdokimov & Ponomarenko 2003, Muzychuk, 2004.

An isomorphism problem for arbitrary cyclic combinatorial objects of orders p^2 and pq was solved by Job, Huffman and Pless in 1993,1996.

Solving sets

Definition

A subset $P \subset \operatorname{Sym}(H)$ is called a solving set for a Cayley digraph $\operatorname{Cay}(H,S)$ iff

$$\forall_{T \subseteq H} \mathsf{Cay}(H, S) \cong \mathsf{Cay}(H, T) \iff \\ \iff \exists_{p \in P} \mathsf{Cay}(H, S)^p = \mathsf{Cay}(H, T).$$

A solving set of minimal cardinality is called a minimal solving set. A set of permutations $P \subseteq \operatorname{Sym}(H)$ is called solving set for the group H iff it is a solving set for all Cayley digraphs over H.

Solving sets

Definition

A subset $P \subset \operatorname{Sym}(H)$ is called a solving set for a Cayley digraph $\operatorname{Cay}(H,S)$ iff

$$\forall_{T \subseteq H} \mathsf{Cay}(H, S) \cong \mathsf{Cay}(H, T) \iff \\ \iff \exists_{p \in P} \mathsf{Cay}(H, S)^p = \mathsf{Cay}(H, T).$$

A solving set of minimal cardinality is called a minimal solving set. A set of permutations $P \subseteq \operatorname{Sym}(H)$ is called solving set for the group H iff it is a solving set for all Cayley digraphs over H.

A group H is a CIG-group iff Aut(H) is a solving set for H.

Theorem (Babai, 1977)

A subset $S \subset H$ is a CI-subset iff any regular subgroup of $\operatorname{Aut}(\operatorname{Cay}(H,S))$ isomorphic to H is conjugate to H_R in $\operatorname{Aut}(\operatorname{Cay}(H,S))$.

Theorem (Babai, 1977)

A subset $S \subset H$ is a CI-subset iff any regular subgroup of Aut(Cay(H, S)) isomorphic to H is conjugate to H_R in Aut(Cay(H, S)).

Definition

Let $G \leq \operatorname{Sym}(H)$ be an arbitrary group. A set $F_i, i \in I$ of H-regular subgroups of G is called an H-base of G iff any H-regular subgroup of G is conjugate in G to exactly one F_i .

Theorem (Babai, 1977)

A subset $S \subset H$ is a CI-subset iff any regular subgroup of Aut(Cay(H, S)) isomorphic to H is conjugate to H_R in Aut(Cay(H, S)).

Definition

Let $G \leq \operatorname{Sym}(H)$ be an arbitrary group. A set F_i , $i \in I$ of H-regular subgroups of G is called an H-base of G iff any H-regular subgroup of G is conjugate in G to exactly one F_i .

Theorem

Let S be an arbitrary subset of H. Let $F_i, i \in I$ be an H-base of the group $G := \operatorname{Aut}(\operatorname{Cay}(H,S))$. Denote by $f_i \in \operatorname{Sym}(H)$ permutations such that $H_R = F_i^{f_i}, i \in I$. Then $\bigcup_{i \in I} f_i \operatorname{Aut}(H)$ is a solving set for $\operatorname{Cay}(H,S)$.

Example

1 Let
$$H = \mathbb{Z}_8$$
 and $\Gamma := \mathsf{Cay}(\mathbb{Z}_8, \{1, 2, 5\});$

- **1** Let $H = \mathbb{Z}_8$ and $\Gamma := \text{Cay}(\mathbb{Z}_8, \{1, 2, 5\});$
- 2 Then $G:=\operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_8,\{1,2,5\}))=\langle \rho\rangle \rtimes \langle \tau\rangle$ where $x^\rho=x+1, x^\tau=5x;$

- **1** Let $H = \mathbb{Z}_8$ and $\Gamma := \text{Cay}(\mathbb{Z}_8, \{1, 2, 5\});$
- 2 Then $G := \operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_8, \{1, 2, 5\})) = \langle \rho \rangle \rtimes \langle \tau \rangle$ where $x^{\rho} = x + 1, x^{\tau} = 5x$;
- 3 G contains exactly two regular cyclic subgroups G: $(\mathbb{Z}_8)_R = \langle \rho \rangle$ and $\langle \sigma \rangle, x^{\sigma} = 5x + 1 \implies \sigma = (0, 1, 6, 7, 4, 5, 2, 3)$

- **1** Let $H = \mathbb{Z}_8$ and $\Gamma := \text{Cay}(\mathbb{Z}_8, \{1, 2, 5\});$
- 2 Then $G := \operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_8, \{1, 2, 5\})) = \langle \rho \rangle \rtimes \langle \tau \rangle$ where $x^{\rho} = x + 1, x^{\tau} = 5x$;
- 3 *G* contains exactly two regular cyclic subgroups *G*: $(\mathbb{Z}_8)_R = \langle \rho \rangle$ and $\langle \sigma \rangle, x^{\sigma} = 5x + 1 \implies \sigma = (0, 1, 6, 7, 4, 5, 2, 3)$
- 4 $\langle \rho \rangle$ and $\langle \sigma \rangle$ is a \mathbb{Z}_8 -base of G;

- **1** Let $H = \mathbb{Z}_8$ and $\Gamma := \text{Cay}(\mathbb{Z}_8, \{1, 2, 5\});$
- 2 Then $G:=\operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_8,\{1,2,5\}))=\langle \rho \rangle \rtimes \langle \tau \rangle$ where $x^{\rho}=x+1, x^{\tau}=5x;$
- 3 *G* contains exactly two regular cyclic subgroups *G*: $(\mathbb{Z}_8)_R = \langle \rho \rangle$ and $\langle \sigma \rangle, x^{\sigma} = 5x + 1 \implies \sigma = (0, 1, 6, 7, 4, 5, 2, 3)$
- 4 $\langle \rho \rangle$ and $\langle \sigma \rangle$ is a \mathbb{Z}_8 -base of G;
- 5 $\langle \rho \rangle = \langle \sigma \rangle^{(2,6)(3,7)} \Longrightarrow \operatorname{Aut}(\mathbb{Z}_8) \cup (2,6)(3,7) \operatorname{Aut}(\mathbb{Z}_8)$ is a solving set for $\operatorname{Cay}(\mathbb{Z}_8, \{1,2,5\})$.

 \blacksquare Find the automorphism groups of all Cayley graphs over H;

- I Find the automorphism groups of all Cayley graphs over H;
- **2** Too many graphs $2^{|H|-1}$;-(

- **1** Find the automorphism groups of all Cayley graphs over H;
- 2 Too many graphs $2^{|H|-1}$;-(
- 3 Different graphs may have the same automorphism group!

- **1** Find the automorphism groups of all Cayley graphs over H;
- **2** Too many graphs $2^{|H|-1}$;-(
- 3 Different graphs may have the same automorphism group! If |H| is prime, then the number of distinct automorphism groups is less than |H|.

- **I** Find the automorphism groups of all Cayley graphs over H;
- **2** Too many graphs $2^{|H|-1}$;-(
- 3 Different graphs may have the same automorphism group! If |H| is prime, then the number of distinct automorphism groups is less than |H|.
- 4 Klin-Pöschel approach use the method of Schur rings to find all possible automorphism groups.

Proposition

Let G = Aut(Cay(H, S)) and $S = \{S_0, S_1, ..., S_d\}$ be the set of orbits of the point stabilizer G_e . Then

Proposition

Let G = Aut(Cay(H, S)) and $S = \{S_0, S_1, ..., S_d\}$ be the set of orbits of the point stabilizer G_e . Then

1
$$S_0 = \{e\};$$

Proposition

Let G = Aut(Cay(H, S)) and $S = \{S_0, S_1, ..., S_d\}$ be the set of orbits of the point stabilizer G_e . Then

- 1 $S_0 = \{e\};$
- **2** S is a union of some orbits $S_i \in S$;

Proposition

Let G = Aut(Cay(H, S)) and $S = \{S_0, S_1, ..., S_d\}$ be the set of orbits of the point stabilizer G_e . Then

- 1 $S_0 = \{e\};$
- **2** *S* is a union of some orbits $S_i \in \mathcal{S}$;
- $G = \bigcap_{i=0}^d \operatorname{Aut}(\operatorname{Cay}(H, S_i))$

Proposition

Let G = Aut(Cay(H, S)) and $S = \{S_0, S_1, ..., S_d\}$ be the set of orbits of the point stabilizer G_e . Then

- 1 $S_0 = \{e\};$
- **2** *S* is a union of some orbits $S_i \in \mathcal{S}$;
- $G = \bigcap_{i=0}^d \operatorname{Aut}(\operatorname{Cay}(H, S_i)) =: \operatorname{Aut}(S).$

Theorem, I. Schur (1933)

The partition S gives rise to a subalgebra of a group algebra $\mathbb{Q}[H]$.

These special partitions will be called Schur partitions of H.

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

- $\mathcal{S}^{(-1)} = \mathcal{S} \text{ where } \mathcal{S}^{(-1)} := \{ \mathcal{S}^{(-1)} \, | \, \mathcal{S} \in \mathcal{S} \};$

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

- $\mathcal{S}^{(-1)} = \mathcal{S} \text{ where } \mathcal{S}^{(-1)} := \{ \mathcal{S}^{(-1)} \, | \, \mathcal{S} \in \mathcal{S} \};$
- **3** the linear span $\underline{\mathcal{S}} := \langle \underline{\mathcal{S}} \rangle_{\mathcal{S} \in \mathcal{S}}$ is a subalgebra of of $\mathbb{Q}[H]$

Definition (Wielandt)

Let $S \subseteq H$. An element $\underline{S} := \sum_{s \in S} s \in \mathbb{Q}[H]$ is called a simple quantity. We abbreviate $\{g\}$ as g.

Schur partitions

A partitition S of a group H is called Schur partition if it satisfies the following conditions

- $\mathcal{S}^{(-1)} = \mathcal{S} \text{ where } \mathcal{S}^{(-1)} := \{ \mathcal{S}^{(-1)} \mid \mathcal{S} \in \mathcal{S} \};$
- **3** the linear span $\underline{\mathcal{S}}:=\langle\underline{\mathcal{S}}\rangle_{\mathcal{S}\in\mathcal{S}}$ is a subalgebra of of $\mathbb{Q}[H]$

A subalgebra \mathcal{A} of $\mathbb{Q}[H]$ arising in this way is called a Schur algebra/ring.

1 Find the set \mathfrak{S} of all Schur partitions of H;

- **1** Find the set \mathfrak{S} of all Schur partitions of H;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then

- **1** Find the set \mathfrak{S} of all Schur partitions of H;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then
 - 1 Find an H-base of G: $F_1, ..., F_k$;

- **1** Find the set \mathfrak{S} of all Schur partitions of H;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then
 - 1 Find an *H*-base of $G: F_1, ..., F_k$;
 - 2 Find $f_i \in Sym(H)$ with $H_R = F_i^{f_i}$, i = 1, ..., k;

- **1** Find the set \mathfrak{S} of all Schur partitions of H;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then
 - 1 Find an *H*-base of $G: F_1, ..., F_k$;
 - 2 Find $f_i \in \text{Sym}(H)$ with $H_R = F_i^{f_i}$, i = 1, ..., k;
 - $3 \text{ Set } P(\mathcal{S}) := \bigcup_{i=1}^k f_i \operatorname{Aut}(H);$

- **1** Find the set \mathfrak{S} of all Schur partitions of H;
- 2 For each $S \in \mathfrak{S}$ find the automorphism group $G := \operatorname{Aut}(S)$. Then
 - 1 Find an *H*-base of $G: F_1, ..., F_k$;
 - 2 Find $f_i \in \text{Sym}(H)$ with $H_R = F_i^{f_i}$, i = 1, ..., k;
 - $3 \operatorname{Set} P(S) := \bigcup_{i=1}^k f_i \operatorname{Aut}(H);$
- **3** Take $\bigcup_{S \in \mathfrak{S}} P(S)$ as a solving set for Cayley digraphs over H.

This scheme successfully worked for \mathbb{Z}_n if n is a power of an odd prime or a product of two distinct primes.

Example: solving set for circulant graphs of order 8

The following list was generated by the computer program COCO (thanks to Misha Klin).

```
\{0\}, \{1, 2, 3, 4, 5, 6, 7\};
\{0\}, \{1, 3, 5, 7\}, \{2, 6, 4\};
\{0\}, \{1, 3, 5, 7, 2, 6\}, \{4\};
\{0\}, \{1, 3, 5, 7\}, \{2, 6\}, \{4\};
\{0\}, \{1, 3, 5, 7\}, \{2\}, \{6\}, \{4\};
\{0\}, \{1,5\}, \{3,7\}, \{2\}, \{6\}, \{4\};
\{0\}, \{1,5\}, \{3,7\}, \{2,6\}, \{4\};
\{0\}, \{1,3\}, \{5,7\}, \{2,6\}, \{4\};
\{0\}, \{1,7\}, \{3,5\}, \{2,6\}, \{4\};
\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}\}
```

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{ c c c c c }\hline 1 & \{0\}, \{1,2,3,4,5,6,7\} & S_8 & \langle \rho \rangle & \mathbb{Z}_8^* \\ \hline 2 & \{0\}, \{1,3,5,7\}, \{2,6,4\} & S_2 \wr S_4 & \langle \rho \rangle & \mathbb{Z}_8^* \\ \hline 3 & \{0\}, \{1,3,5,7,2,6\}, \{4\} & S_4 \wr S_2 & \langle \rho \rangle & \mathbb{Z}_8^* \\ \hline 4 & \{0\}, \{1,3,5,7\}, \{2,6\}, \{4\} & S_2 \wr S_2 \wr S_2 & \langle \rho \rangle & \mathbb{Z}_8^* \\ \hline 5 & \{0\}, \{1,3,5,7\}, \{2\}, \{6\}, \{4\} & S_2 \wr \mathbb{Z}_4 & \langle \rho \rangle & \mathbb{Z}_8^* \\ \hline 6 & \{0\}, \{1,5\}, \{3,7\}, \{2\}, \{6\}, \{4\} & \mathbb{Z}_8.\mathbb{Z}_2 & \langle \rho \rangle, \langle \sigma \rangle & \mathbb{Z}_8^* \cup \alpha \mathbb{Z}_8 \\ \hline 7 & \{0\}, \{1,5\}, \{3,7\}, \{2,6\}, \{4\} & \mathbb{Z}_4 \wr S_2 & \langle \rho \rangle & \mathbb{Z}_8^* \\ \hline 8 & \{0\}, \{1,3\}, \{5,7\}, \{2,6\}, \{4\} & \mathbb{Z}_8.\mathbb{Z}_2 & \langle \rho \rangle & \mathbb{Z}_8^* \\ \hline 9 & \{0\}, \{1,7\}, \{3,5\}, \{2,6\}, \{4\} & D_{16} & \langle \rho \rangle & \mathbb{Z}_8^* \\ \hline \end{array}$	N	S-partition ${\mathcal S}$	Aut.	cyclic	Solving
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			group	bases	set
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\{0\}, \{1, 2, 3, 4, 5, 6, 7\}$	S ₈	$\langle ho angle$	\mathbb{Z}_8^*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$\{0\},\{1,3,5,7\},\{2,6,4\}$	$S_2 \wr S_4$	$\langle ho angle$	\mathbb{Z}_8^*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$\{0\}, \{1, 3, 5, 7, 2, 6\}, \{4\}$	$S_4 \wr S_2$	$\langle ho angle$	\mathbb{Z}_8^*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$\{0\},\ \{1,3,5,7\},\ \{2,6\},\ \{4\}$	$S_2 \wr S_2 \wr S_2$	$\langle ho angle$	\mathbb{Z}_8^*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	$\{0\}, \{1,3,5,7\}, \{2\}, \{6\}, \{4\}$	$S_2 \wr \mathbb{Z}_4$	$\langle ho angle$	\mathbb{Z}_8^*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	$\{0\}, \{1,5\}, \{3,7\}, \{2\}, \{6\}, \{4\}$	$\mathbb{Z}_8.Z_2$	$\langle \rho \rangle, \langle \sigma \rangle$	$\mathbb{Z}_8^* \cup \alpha \mathbb{Z}_8^*$
9 $\{0\}, \{1,7\}, \{3,5\}, \{2,6\}, \{4\}$ D_{16} $\langle \rho \rangle$ \mathbb{Z}_8^*	7	$\{0\}, \{1,5\}, \{3,7\}, \{2,6\}, \{4\}$	$\mathbb{Z}_4 \wr S_2$	$\langle ho angle$	\mathbb{Z}_8^*
	8	$\{0\}, \{1,3\}, \{5,7\}, \{2,6\}, \{4\}$	$\mathbb{Z}_8.\mathbb{Z}_2$	$\langle ho angle$	\mathbb{Z}_8^*
$\begin{bmatrix} 10 & \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\} \end{bmatrix} \mathbb{Z}_8 \qquad \langle \rho \rangle \qquad \mathbb{Z}_8^*$	9	$\{0\}, \{1,7\}, \{3,5\}, \{2,6\}, \{4\}$	D_{16}	$\langle ho angle$	\mathbb{Z}_8^*
(-), (-), (-), (-), (-), (-), (-), (-) -0 \r/ -8	10	$\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}$	\mathbb{Z}_8	$\langle ho angle$	\mathbb{Z}_8^*

Here $\alpha=(2,6)(3,7)$. Thus $\mathbb{Z}_8^*\cup \alpha\mathbb{Z}_8^*$ is a solving set for circulant graphs over \mathbb{Z}_8 .

Theorem (Klin-Pöschel, 1978)

Let n be an odd prime power. Then

1 the number of Schur rings over \mathbb{Z}_n is bounded by n^C , $2 \le C < 2.5$;

Theorem (Klin-Pöschel, 1978)

Let n be an odd prime power. Then

- **1** the number of Schur rings over \mathbb{Z}_n is bounded by n^C , $2 \le C < 2.5$;
- 2 there exists an efficiently constructed solving set P_n for circulant graphs of order n s.t. $|P_n| \le n^C \varphi(n)$

Theorem (Klin-Pöschel, 1978)

Let n be an odd prime power. Then

- **1** the number of Schur rings over \mathbb{Z}_n is bounded by n^C , $2 \le C < 2.5$;
- 2 there exists an efficiently constructed solving set P_n for circulant graphs of order n s.t. $|P_n| \le n^C \varphi(n)$

Theorem (Muzychuk-Pöschel, 1999)

Let $n=2^m$. Then there exists an efficiently constructed solving set P_n for circulant graphs of order n s.t. $|P_n| \le n^C \varphi(n)$.

But if n is a square-free number, the number of Schur partitions growes exponentially!

Control of H-bases

Definition

Let $H_R \leq X \leq Y \leq \operatorname{Sym} H$ be arbitrary subgroups. We say that X controls H-bases of Y, notation $X \leq_H Y$, if there exists an H-base of X which contains an H-base of Y.

Control of H-bases

Definition

Let $H_R \leq X \leq Y \leq \operatorname{Sym} H$ be arbitrary subgroups. We say that X controls H-bases of Y, notation $X \leq_H Y$, if there exists an H-base of X which contains an H-base of Y.

Proposition

The following are equivalent

- $\mathbf{1} X \leq_H Y;$
- 2 for any H-regular subgroup $F \leq Y$ there exists $y \in Y$ s.t. $F^y \leq X$;
- \blacksquare any H-base of X contains an H-base of Y.

Control of H-bases

Definition

Let $H_R \leq X \leq Y \leq \operatorname{Sym} H$ be arbitrary subgroups. We say that X controls H-bases of Y, notation $X \leq_H Y$, if there exists an H-base of X which contains an H-base of Y.

Proposition

The following are equivalent

- $1 X \leq_H Y;$
- 2 for any H-regular subgroup $F \leq Y$ there exists $y \in Y$ s.t. $F^y \leq X$;
- \blacksquare any H-base of X contains an H-base of Y.

Proposition

The relation \leq_H is a partial order on the lattice $[H_R, Sym(H)]$.

Proposition

If H is a p-group, then every \leq_{H} -minimal subgroup of Sym H is a p-group too.

Proposition

If H is a p-group, then every \leq_{H} -minimal subgroup of Sym H is a p-group too.

Example. The symmetric group Sym(8) has two $\prec_{\mathbb{Z}_8}$ -minimal subgroups: \mathbb{Z}_8 and $\mathbb{Z}_8 \rtimes \langle \sigma \rangle$ where $\sigma(x) = 5x$.

Proposition

If H is a p-group, then every \leq_{H} -minimal subgroup of Sym H is a p-group too.

Example. The symmetric group Sym(8) has two $\prec_{\mathbb{Z}_8}$ -minimal subgroups: \mathbb{Z}_8 and $\mathbb{Z}_8 \rtimes \langle \sigma \rangle$ where $\sigma(x) = 5x$.

Theorem (Palfy, 1987)

If H is a cyclic group of order n, then H_R is a unique \leq_{H} -minimal subgroup iff n=4 or $\gcd(n,\varphi(n))=1$.

Proposition

If H is a p-group, then every \leq_{H} -minimal subgroup of Sym H is a p-group too.

Example. The symmetric group Sym(8) has two $\prec_{\mathbb{Z}_8}$ -minimal subgroups: \mathbb{Z}_8 and $\mathbb{Z}_8 \rtimes \langle \sigma \rangle$ where $\sigma(x) = 5x$.

Theorem (Palfy, 1987)

If H is a cyclic group of order n, then H_R is a unique \leq_{H} -minimal subgroup iff n=4 or $\gcd(n,\varphi(n))=1$.

Theorem (M., 1999)

If H is cyclic, then each \prec_H -minimal subgroup of $X \in [H_R, \operatorname{Sym} H]$ is solvable and $\pi(X) = \pi(H)$.

Isomorphism problem for cyclic combinatorial objects

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of Schur rings.

Isomorphism problem for cyclic combinatorial objects

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of Schur rings.

Theorem (M. 2004)

Let $n=p_1^{m_1}\cdot\ldots\cdot p_k^{m_k}$ be a decomposition of n into a product of prime powers. Denote by $P_{p_i^{m_i}}$ a solving set for colored circulant digraphs over $\mathbb{Z}_{p_i^{m_i}}$. Then the set $P_n:=P_{p_1^{m_1}}\times\ldots\times P_{p_k^{m_k}}$ is a solving set for colored Cayley digraphs over \mathbb{Z}_n . In particular, $|P_n|< n^C \varphi(n)$.

Non-graphical cyclic combinatorial objects

Theorem (M., 2011)

The set P_n is also a solving set for a semisimple cyclic codes of length n. In other words, two semisimple cyclic codes $C, D \leq \mathbb{F}_q^n$ are permutation equivalent iff there exists $g \in P_n$ s.t. $C^g = D$.

Non-graphical cyclic combinatorial objects

Theorem (M., 2011)

The set P_n is also a solving set for a semisimple cyclic codes of length n. In other words, two semisimple cyclic codes $C, D \leq \mathbb{F}_q^n$ are permutation equivalent iff there exists $g \in P_n$ s.t. $C^g = D$.

Theorem (I. Kovacs, D. Marušič and M. Muzychuk, 2015)

A cyclic group is a Cl-group with respect to balanced configurations.

Definition

A Cayley map is a triple $M(H, S, \rho)$ where

- \blacksquare *H* is a finite group;
- 2 $S \subseteq H$ is a symmetric subset of H;
- $\rho \in \text{Sym}(S)$ is a rotation of S (full cycle permutation).

Definition

A Cayley map is a triple $M(H, S, \rho)$ where

- H is a finite group;
- 2 $S \subseteq H$ is a symmetric subset of H;
- $\rho \in \text{Sym}(S)$ is a rotation of S (full cycle permutation).

A rotation ρ determines a 2-cell embeding of the Cayley graph Cay(H,S) into a surface.

Definition

A Cayley map is a triple $M(H, S, \rho)$ where

- \blacksquare *H* is a finite group;
- 2 $S \subseteq H$ is a symmetric subset of H;
- $\rho \in \text{Sym}(S)$ is a rotation of S (full cycle permutation).

A rotation ρ determines a 2-cell embeding of the Cayley graph Cay(H,S) into a surface.

Example: $H = \mathbb{Z}_2 \times \mathbb{Z}_2$, $S = \{01, 10, 11\}$, $\rho = (01, 10, 11)$.

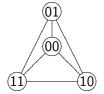
Definition

A Cayley map is a triple $M(H, S, \rho)$ where

- H is a finite group;
- **2** $S \subseteq H$ is a symmetric subset of H;
- $\rho \in \text{Sym}(S)$ is a rotation of S (full cycle permutation).

A rotation ρ determines a 2-cell embeding of the Cayley graph Cay(H,S) into a surface.

Example:
$$H = \mathbb{Z}_2 \times \mathbb{Z}_2$$
, $S = \{01, 10, 11\}$, $\rho = (01, 10, 11)$.



Map isomorphisms

Definition

Two Cayley maps $M(H, S, \rho)$ and $M(H, S', \rho')$ are isomorphic iff there exists a bijection $f \in \text{Sym}(H)$ s.t.

$$\{(h, sh, \rho(s)h) \mid s \in S, h \in H\}^f = \{(h, sh, \rho'(s)h) \mid s \in S', h \in H\}.$$

Cayley isomorphism

Two Cayley maps $M(H, S, \rho)$ and $M(H, S', \rho')$ are Cayley isomorphic iff there exists $f \in \text{Aut}(H)$ s.t. $S^f = S$ and $f_S \rho = \rho' f_S$.

Problem

Classify all finite groups with Cl-property with respect to maps.

Cl-groups with respect to maps

Theorem (M and G. Somlai, 2015)

Let H be a CI-group with respect to Cayley maps. Then H is isomorphic to one of the following groups

1
$$\mathbb{Z}_2^r \times \mathbb{Z}_m, \mathbb{Z}_4 \times \mathbb{Z}_m, \mathbb{Z}_8 \times \mathbb{Z}_m, Q_8 \times \mathbb{Z}_m;$$

2
$$\mathbb{Z}_m \rtimes \mathbb{Z}_{2^e}, e = 1, 2, 3.$$

where m is a square-free odd number.

Cl-groups with respect to maps

Theorem (M and G. Somlai, 2015)

Let H be a CI-group with respect to Cayley maps. Then H is isomorphic to one of the following groups

- $1 \mathbb{Z}_2^r \times \mathbb{Z}_m, \mathbb{Z}_4 \times \mathbb{Z}_m, \mathbb{Z}_8 \times \mathbb{Z}_m, Q_8 \times \mathbb{Z}_m;$
- $\mathbb{Z}_m \rtimes \mathbb{Z}_{2^e}, e = 1, 2, 3.$

where m is a square-free odd number.

Theorem (M and G. Somlai, 2015)

The following groups are CI with respect to Cayley maps.

$$\mathbb{Z}_m \times \mathbb{Z}_4, \mathbb{Z}_m \times \mathbb{Z}_2^r, \mathbb{Z}_m \times Q_8.$$

