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Combinatorial objects.

A combinatorial object over a finite set Ω is a pair (Ω,O) where O
is an arbitrary relational structure on Ω.

1 graphs and digraphs;

2 colored digraphs;

3 block-designs;

4 combinatorial maps;

5 etc
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Graphs

A graph is a pair Γ = (Ω,E ) where Ω is a finite set of vertices and
E ⊂ Ω× Ω is the set of (directed) edges/arcs.

Graph Isomorphism.

Γ1 = (Ω1,E1) ∼= Γ2 = (Ω2,E2) iff there exists a bijection (an
isomorphism) f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1) ∈ E2 ⇔ (α1, β1) ∈ E1.

Aut(Γ1) is the automorphism group of Γ1.
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f =

(
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)

Aut(Γ) = (S3 × S3).S2.
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The Graph Isomorphism Problem (GIP).

GIP is to find the computational complexity of the problem:

GIP(Γ1, Γ2): given graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection
f : Ω1 → Ω2 one can test in time O(n2) whether f is an
isomorphism.

Therefore GIP∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GIP∈P.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time
exp(O((log n)c)).
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Cayley graphs

Definition

A Cayley graph over a finite group H defined by a connection set
S ⊆ H has H as a set of nodes and arc set

Cay(H,S) := {(x , y) | xy−1 ∈ S}.

A circulant graph is a Cayley graph over a cyclic group.

Proposition

1 For any h ∈ H the permutation hR : x 7→ xh is an
automorphism of Cay(H, S);

2 The set HR := {hR | h ∈ H} is a regular subgroup of
Aut(Cay(S ,H)).
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Cayley objects and regular subgroups.

Definition

A transitive subgroup of Sym(Ω) is called regular iff it’s point
stabilizer is trivial. An H-regular subgroup is a regular subgroup
isomorphic to H.

Theorem (Sabidussi)

A graph is isomorphic to a Cayley graph over a group H iff its
automorphism group contains an H-regular subgroup.

Definition

Any combinatorial object (H,O) is called a Cayley object if it is
HR -invariant.

Theorem

Subidussi’s Theorem is true for any combinatorial object.
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Cayley graphs isomorphism problem

CGIP

Given two Cayley graphs Cay(H, S) and Cay(H,T ). Find whether
they are isomorphic.

CGIP for a group class

Given a class H of finite groups. Does there exists a polynomial
algorithm which solves a CGIP for groups in H.

Cayley graph automorphism group

Given a Cayley graphs Cay(H,S). Find generators of
Aut(Cay(H,S)).

Cayley graph recognition problem

Given a graph Γ of order n and a finite group H, |H| = n. Find
whether Γ is isomorphic to a Cayley graph over H.
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Cayley isomorphic graphs

Definition

Two Cayley graphs Cay(H,S) and Cay(H,T ) are Cayley
isomorphic, notation Cay(H, S) ∼=Cay Cay(H,T ), iff

∃f ∈Aut(H) Cay(H, S)f = Cay(H,T )

⇐⇒ ∃f ∈Aut(H) S f = T .

Observation

Cay(H, S) ∼=Cay Cay(H,T ) =⇒ Cay(H,S) ∼= Cay(H,T )

Example

Take H = Z2 × Z4,S = H \ K ,T = H \ C where K ,C are order 4
subgroups, K ∼= Z2 × Z2,C ∼= Z4. Then

Cay(H,S) ∼= K4,4
∼= Cay(H,T ).
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CI-property

CI-property

A subset S ⊆ H of group H is called a CI-subset if for any subset
T ⊆ H the following equivalence holds

Cay(H,S) ∼=Cay Cay(H,T ) ⇐⇒ Cay(H,S) ∼= Cay(H,T )

CIG-groups

A group H is called a CI-group with respect to graphs, CIG-group
for short, if any subset of H is a CI-subset.
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Isomorphism problem for circulant graphs

Ádám’s conjecture (1967): Zn is a CI-group for every n

Cay(Zn,S) ∼= Cay(Zn,T ) ⇐⇒ ∃m∈Z∗
n
T = mS .
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Ádám’s conjecture

Theorem (Alspach & Parsons and Egorov & Markov, 1979)

Ádám’s conjecture fails if n is divisible by 8 or by odd square.

Ádám’s conjecture is true if

1 n is a prime - Elspas & Parsons;

2 n = 2p, 3p, 4p - Babai 1977;

3 n = pq, p 6= q are primes - C. Godsil (1977), Klin & Pöschel
(1978), Alspach & Parsons (1979)

Pálfy’s correction of Ádám’s conjecture (1987):

Ádám conjecture is true if n is a square free or twice square free
number.
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Ádám’s conjecture

Theorem (Pálfy, 1987)
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CI-groups w.r.t. digraphs

During last 40 years the classification of CIG-groups was studied by
many researches: B. Alspach, L.Babai, M.Conder, E. Dobson, B.
Elspas, V.N.Egorov, P.Frankl, C. Godsil, M. Hirasaka, M. Klin, I.
Kovacs, C.H.Li, Z.P. Lu, A.I.Markov, L. Nowitz, T.D. Parsons, P.
Pálfy, R. Pöschel, C. Praeger, P. Spiga, G. Somlai, J. Turner.

Theorem (necessary conditions to be a CIG-group)

If H is a CI-group w.r.t. digraphs, then H is a coprime product of
groups from the following list:

Ze
p, Z4,Q8,A4,E (M, 2),E (M, 3),E (M, 4).

where M is a direct product of elementary abelian groups of odd
order.
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CI-groups w.r.t. digraphs (sufficient conditions)

Theorem

The following groups are CI-groups w.r.t. digraphs

1 Zn where n is square-free or twice square-free number;

2 Ze
p, e ≤ 4 and Z5

2;

3 Z2
p × Zq,Z3

p × Zq where p and q are distinct primes;

4 D2p,F3p,Zp o Z4;

5 Q8,A4.

1. C.H. Li, On isomorphisms of finite Cayley graphs - survey, DM
256 (2002),
2. C.H. Li, Z.P. Lu, P. Pálfy, Further restrictions on the struture of
finite CI-groups, JACO 26 (2007).



Open Problems

1 Given a prime p, find a minimal n(p) such that Zn
p is not a

CIG-group,

n(p) ≥ 5, n(p) < 2p + 3 (G. Somlai);
n(2) = 6 (L. Nowitz), 6 ≤ n(3) ≤ 8 (P. Spiga).

2 Does there exists n0 such that Zn0
p is not a CIG-group for any

prime p?

3 Is Z5
p a CIG-group?

4 Is a coprime product of CIG-groups a CIG-group?

5 Is a dihedral group of a square-free order a CIG-group?

6 Find a polynomial algorithm which solves a recognition
problem for Cayley graphs over Z2

p.
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Non-CI groups: the cyclic case

1 n = p2, Alspach & Parsons, 1978;

2 n = pm, p > 2, Klin & Pöschel, 1978;

3 n = 2m, Muzychuk & Pöschel, 1999;

4 arbitrary n, Evdokimov & Ponomarenko - 2003, Muzychuk,
2004.

An isomorphism problem for arbitrary cyclic combinatorial objects
of orders p2 and pq was solved by Job, Huffman and Pless in
1993,1996.
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Solving sets

Definition

A subset P ⊂ Sym(H) is called a solving set for a Cayley digraph
Cay(H, S) iff

∀T⊆HCay(H,S) ∼= Cay(H,T ) ⇐⇒

⇐⇒ ∃p∈PCay(H,S)p = Cay(H,T ).

A solving set of minimal cardinality is called a minimal solving set.
A set of permutations P ⊆ Sym(H) is called solving set for the
group H iff it is a solving set for all Cayley digraphs over H.

A group H is a CIG-group iff Aut(H) is a solving set for H.
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”Individual” solving set

Theorem (Babai, 1977)

A subset S ⊂ H is a CI-subset iff any regular subgroup of Aut(Cay(H,S))
isomorphic to H is conjugate to HR in Aut(Cay(H,S)).

Definition

Let G ≤ Sym(H) be an arbitrary group. A set Fi , i ∈ I of H-regular
subgroups of G is called an H-base of G iff any H-regular subgroup of G
is conjugate in G to exactly one Fi .

Theorem

Let S be an arbitrary subset of H. Let Fi , i ∈ I be an H-base of the
group G := Aut(Cay(H,S))). Denote by fi ∈ Sym(H) permutations such
that HR = F fi

i , i ∈ I . Then ∪i∈I fi Aut(H) is a solving set for Cay(H,S).
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Example

1 Let H = Z8 and Γ := Cay(Z8, {1, 2, 5});

2 Then G := Aut(Cay(Z8, {1, 2, 5})) = 〈ρ〉o 〈τ〉 where
xρ = x + 1, xτ = 5x ;

3 G contains exactly two regular cyclic subgroups G :
(Z8)R = 〈ρ〉 and
〈σ〉, xσ = 5x + 1 =⇒ σ = (0, 1, 6, 7, 4, 5, 2, 3)

4 〈ρ〉 and 〈σ〉 is a Z8-base of G ;

5 〈ρ〉 = 〈σ〉(2,6)(3,7) =⇒ Aut(Z8) ∪ (2, 6)(3, 7) Aut(Z8) is a
solving set for Cay(Z8, {1, 2, 5}).
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How to construct a solving set for all Cayley graphs over H

1 Find the automorphism groups of all Cayley graphs over H;

2 Too many graphs - 2|H|−1;-(

3 Different graphs may have the same automorphism group!

If |H| is prime, then the number of distinct automorphism
groups is less than |H|.

4 Klin-Pöschel approach - use the method of Schur rings to find
all possible automorphism groups.
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4 Klin-Pöschel approach - use the method of Schur rings to find
all possible automorphism groups.



How to construct a solving set for all Cayley graphs over H

1 Find the automorphism groups of all Cayley graphs over H;

2 Too many graphs - 2|H|−1;-(

3 Different graphs may have the same automorphism group!

If |H| is prime, then the number of distinct automorphism
groups is less than |H|.
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4 Klin-Pöschel approach - use the method of Schur rings to find
all possible automorphism groups.



Automorphism groups of Cayley graphs

Proposition

Let G = Aut(Cay(H,S)) and S = {S0,S1, ...,Sd} be the set of
orbits of the point stabilizer Ge . Then

1 S0 = {e};
2 S is a union of some orbits Si ∈ S;

3 G =
⋂d

i=0 Aut(Cay(H,Si )) =: Aut(S).

Theorem, I. Schur (1933)

The partition S gives rise to a subalgebra of a group algebra Q[H].

These special partitions will be called Schur partitions of H.
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Schur rings (algebras)

Definition (Wielandt)

Let S ⊆ H. An element S :=
∑

s∈S s ∈ Q[H] is called a simple
quantity. We abbreviate {g} as g .

Schur partitions

A partitition S of a group H is called Schur partition if it satisfies
the following conditions

1 {e} ∈ S;

2 S(−1) = S where S(−1) := {S (−1) |S ∈ S};
3 the linear span S := 〈S〉S∈S is a subalgebra of of Q[H]

A subalgebra A of Q[H] arising in this way is called a Schur
algebra/ring.
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Klin-Pöschel scheme for a solution of IPCG.

1 Find the set S of all Schur partitions of H;

2 For each S ∈ S find the automorphism group G := Aut(S).
Then

1 Find an H-base of G : F1, ...,Fk ;
2 Find fi ∈ Sym(H) with HR = F fi

i , i = 1, ..., k;

3 Set P(S) :=
⋃k

i=1 fi Aut(H);

3 Take
⋃
S∈S P(S) as a solving set for Cayley digraphs over H.

This scheme successfully worked for Zn if n is a power of an odd
prime or a product of two distinct primes.
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Klin-Pöschel scheme for a solution of IPCG.

1 Find the set S of all Schur partitions of H;

2 For each S ∈ S find the automorphism group G := Aut(S).
Then

1 Find an H-base of G : F1, ...,Fk ;
2 Find fi ∈ Sym(H) with HR = F fi

i , i = 1, ..., k;

3 Set P(S) :=
⋃k

i=1 fi Aut(H);

3 Take
⋃
S∈S P(S) as a solving set for Cayley digraphs over H.

This scheme successfully worked for Zn if n is a power of an odd
prime or a product of two distinct primes.
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Example: solving set for circulant graphs of order 8

The following list was generated by the computer program COCO
(thanks to Misha Klin).

{0}, {1, 2, 3, 4, 5, 6, 7};
{0}, {1, 3, 5, 7}, {2, 6, 4} ;
{0}, {1, 3, 5, 7, 2, 6}, {4} ;
{0}, {1, 3, 5, 7}, {2, 6}, {4} ;
{0}, {1, 3, 5, 7}, {2}, {6}, {4} ;
{0}, {1, 5}, {3, 7}, {2}, {6}, {4} ;
{0}, {1, 5}, {3, 7}, {2, 6}, {4} ;
{0}, {1, 3}, {5, 7}, {2, 6}, {4} ;
{0}, {1, 7}, {3, 5}, {2, 6}, {4} ;
{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} ;



Example

N S-partition S Aut. cyclic Solving
group bases set

1 {0}, {1, 2, 3, 4, 5, 6, 7} S8 〈ρ〉 Z∗8
2 {0}, {1, 3, 5, 7}, {2, 6, 4} S2 o S4 〈ρ〉 Z∗8
3 {0}, {1, 3, 5, 7, 2, 6}, {4} S4 o S2 〈ρ〉 Z∗8
4 {0}, {1, 3, 5, 7}, {2, 6}, {4} S2 o S2 o S2 〈ρ〉 Z∗8
5 {0}, {1, 3, 5, 7}, {2}, {6}, {4} S2 o Z4 〈ρ〉 Z∗8
6 {0}, {1, 5}, {3, 7}, {2}, {6}, {4} Z8.Z2 〈ρ〉, 〈σ〉 Z∗8 ∪ αZ∗8
7 {0}, {1, 5}, {3, 7}, {2, 6}, {4} Z4 o S2 〈ρ〉 Z∗8
8 {0}, {1, 3}, {5, 7}, {2, 6}, {4} Z8.Z2 〈ρ〉 Z∗8
9 {0}, {1, 7}, {3, 5}, {2, 6}, {4} D16 〈ρ〉 Z∗8

10 {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} Z8 〈ρ〉 Z∗8

Here α = (2, 6)(3, 7). Thus Z∗8 ∪ αZ∗8 is a solving set for circulant graphs

over Z8.



Solution of the isomorphism problem for circulant digraphs.

Theorem (Klin-Pöschel, 1978)

Let n be an odd prime power. Then

1 the number of Schur rings over Zn is bounded by
nC , 2 ≤ C < 2.5;

2 there exists an efficiently constructed solving set Pn for
circulant graphs of order n s.t. |Pn| ≤ nCϕ(n)

Theorem (Muzychuk-Pöschel, 1999)

Let n = 2m. Then there exists an efficiently constructed solving set
Pn for circulant graphs of order n s.t. |Pn| ≤ nCϕ(n).

But if n is a square-free number, the number of Schur partitions
growes exponentially!
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Control of H-bases

Definition

Let HR ≤ X ≤ Y ≤ SymH be arbitrary subgroups. We say that X
controls H-bases of Y , notation X �H Y , if there exists an H-base
of X which contains an H-base of Y .

Proposition

The following are equivalent

1 X �H Y ;

2 for any H-regular subgroup F ≤ Y there exists y ∈ Y s.t.
F y ≤ X ;

3 any H-base of X contains an H-base of Y .

Proposition

The relation �H is a partial order on the lattice [HR ,Sym(H)].
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�H-minimal subgroups.

Proposition

If H is a p-group, then every �H -minimal subgroup of SymH is a
p-group too.

Example. The symmetric group Sym(8) has two ≺Z8-minimal
subgroups: Z8 and Z8 o 〈σ〉 where σ(x) = 5x .

Theorem (Palfy, 1987)

If H is a cyclic group of order n, then HR is a unique �H -minimal
subgroup iff n = 4 or gcd(n, ϕ(n)) = 1.

Theorem (M., 1999)

If H is cyclic, then each ≺H -minimal subgroup of X ∈ [HR ,SymH]
is solvable and π(X ) = π(H).
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Isomorphism problem for cyclic combinatorial objects

Theorem (M., 2004)

The automorphism group G of a colored circulant digraph contains
a nilpotent subgroup which controls cyclic bases.

Remark. The original statement is formulated in the language of
Schur rings.

Theorem (M. 2004)

Let n = pm1
1 · ... · p

mk
k be a decomposition of n into a product of

prime powers. Denote by Pp
mi
i

a solving set for colored circulant

digraphs over Zp
mi
i

.Then the set Pn := Pp
m1
1
× ...× Pp

mk
k

is a

solving set for colored Cayley digraphs over Zn. In particular,
|Pn| < nCϕ(n).
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Non-graphical cyclic combinatorial objects

Theorem (M., 2011)

The set Pn is also a solving set for a semisimple cyclic codes of
length n. In other words, two semisimple cyclic codes C ,D ≤ Fn

q

are permutation equivalent iff there exists g ∈ Pn s.t. C g = D.

Theorem (I. Kovacs, D. Marus̆ic̆ and M. Muzychuk, 2015)

A cyclic group is a CI-group with respect to balanced
configurations.
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Non-graphical combinatorial objects: Cayley maps

Definition

A Cayley map is a triple M(H, S , ρ) where

1 H is a finite group;

2 S ⊆ H is a symmetric subset of H;

3 ρ ∈ Sym(S) is a rotation of S (full cycle permutation).

A rotation ρ determines a 2-cell embeding of the Cayley graph
Cay(H, S) into a surface.

Example: H = Z2 × Z2,S = {01, 10, 11}, ρ = (01, 10, 11).
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Map isomorphisms

Definition

Two Cayley maps M(H,S , ρ) and M(H,S ′, ρ′) are isomorphic iff
there exists a bijection f ∈ Sym(H) s.t.

{(h, sh, ρ(s)h) | s ∈ S , h ∈ H}f = {(h, sh, ρ′(s)h) | s ∈ S ′, h ∈ H}.

Cayley isomorphism

Two Cayley maps M(H,S , ρ) and M(H,S ′, ρ′) are Cayley
isomorphic iff there exists f ∈ Aut(H) s.t. S f = S and fSρ = ρ′fS .

Problem

Classify all finite groups with CI-property with respect to maps.



CI-groups with respect to maps

Theorem (M and G. Somlai, 2015)

Let H be a CI-group with respect to Cayley maps. Then H is
isomorphic to one of the following groups

1 Zr
2 × Zm,Z4 × Zm,Z8 × Zm,Q8 × Zm;

2 Zm o Z2e , e = 1, 2, 3.

where m is a square-free odd number.

Theorem (M and G. Somlai, 2015)

The following groups are CI with respect to Cayley maps.

Zm × Z4,Zm × Zr
2,Zm × Q8.
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