Classifying the fuzzy subgroups of finite symmetric groups

M. E. Ogiugo
Department of Mathematics, University of Ibadan, Ibadan, Nigeria, West Africa
ekpenogiugo@gmail.com

M. EniOluwafe
Department of Mathematics, University of Ibadan, Ibadan, Nigeria, West Africa
michael.enioluwafe@gmail.com

The main goal of this paper is to classify the fuzzy subgroups of the finite symmetric group S_n. First, an equivalence relation on the set of all fuzzy subgroups of a group G is defined. Without any equivalence relation on fuzzy subgroups of group G, the number of fuzzy subgroups is infinite, even for the trivial group. In this paper, classifying the fuzzy subgroups structure of a finite symmetric groups $S_n (n \geq 5)$ is made. An explicit formula for the number of distinct fuzzy subgroups of S_n is indicated. We also count the number of fuzzy subgroups for a particular class of finite symmetric groups.

One of the most important problems of fuzzy group theory is to classify the fuzzy subgroups of a finite groups. This topic has enjoyed a rapid development in the last few years. In our case the corresponding equivalence classes of fuzzy subgroups are closely connected to the chains of subgroups in S_n. As a guiding principle in determining the number of these classes, we found the number of maximal chains of S_n. Note that an essential role in solving our counting problem is played again by the Inclusion-Exclusion Principle. It leads us to some recurrence relations, whose solutions have been easily found.