On the number of n-ary quasigroups, Latin hypercubes and MDS codes

Vladimir N. Potapov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
vpotapov@math.nsc.ru

A latin square of order n is an $n \times n$ array of n symbols in which each symbol occurs exactly once in each row and in each column. A d-dimensional array with the same property is called a latin d-cube. Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. If in a set of latin squares, any two latin squares are orthogonal then the set is called Mutually Orthogonal Latin Squares (MOLS). From the definition we can ensure that a latin d-cube is the Cayley table of a d-ary quasigroup. Denote by Q the underlying set of the quasigroup. A system consisting of t s-ary functions f_1, \ldots, f_t ($t \geq s$) is orthogonal, if for each subsystem f_{i_1}, \ldots, f_{i_s} consisting of s functions it holds $\{(f_{i_1}(\varpi), \ldots, f_{i_s}(\varpi)) \mid \varpi \in Q^s\} = Q^s$. If the system keeps to be orthogonal after substituting any constants for each subset of variables then it is called strongly orthogonal (see [2]). If the number of variables equals 2 ($s=2$) then such system is equivalent to a set of MOLS. If $s>2$, it is a set of Mutually Strong Orthogonal Latin s-Cubes (MSOLC). A subset C of Q^d is called an MDS code (of order $|Q|$ with code distance $t+1$ and with length d) if $|C \cap \Gamma|=1$ for each t-dimensional face Γ. A system of t MSOLC is equivalent to MDS code with distance $t+1$ (see [2]). Numbers of MOLS, latin d-cubes and MDS codes for small orders are calculated in [4], [7].

Let $N(n,d,g)$ be the number of MDS codes of order n with code distance g and length d. An upper bound $N(n,d,2) \leq ((1+o(1)) n/e^d)^n$ is proved in [6].

Theorem. For each prime number p and $d \leq p+1$ if $3 \leq g \leq p$ or an arbitrary $d \geq 2$ if $g=2$ it holds $\ln N(p^d,d,g) \geq (k+m)p(k-2)m \ln p(1+o(1))$ as $k \to \infty$, $m=d-g+1$.

Corollary. (a) The logarithm of the number of latin d-cubes of order n is $\Theta(n^d \ln n)$ as $n \to \infty$.
(b) The logarithm of the number of pairs of orthogonal latin squares of order n is $\Theta(n^2 \ln n)$ as $n \to \infty$.

We use results of [5] to obtain (a) and results of [3] to obtain (b). Item (b) for a subsequence of integers was proved in [1]. Complete text of the report is available in [8].

The work was funded by the Russian Science Foundation (grant No 14-11-00555).

References