On Eulerian Identities in $UT_n(\mathbb{Q})$

Mikhail Zimin
Ural Federal University, Yekaterinburg, Russia
furroro@gmail.com

One of the known methods of building identities in matrix rings deals with eulerian multigraphs. A multigraph is a graph which is permitted to have multiple oriented edges with same end nodes, and loops - edges with same start and end node. Suppose, G is an eulerian graph with n edges and $\Pi(G)$ is the set of all its eulerian paths. Every such path π we consider to be a permutation of set $\{1, 2, \ldots, n\}$, by $\text{sgn}(\pi)$ we denote the sign of this transposition. An eulerian polynomial of the graph G is the polynomial:

$$P_G = \sum_{\pi \in \Pi(G)} \text{sgn}(\pi) x_{\pi(1)} \cdots x_{\pi(n)}.$$

The examples of eulerian polynomials are well known standard polynomials

$$S_n = \sum_{\pi \in S_n} \text{sgn}(\pi) x_{\pi(1)} \cdots x_{\pi(n)},$$

which are built from graphs with one vertex and n loops. The identity $f = 0$ is called eulerian, if f is an eulerian polynomial of some graph.

The identity basis of 2×2 matrices ring from eulerian polynomials is already found by M. Domokos in [1]. The following result deals with ring of upper triangular matrices $UT_n(\mathbb{Q})$, the identity basis of such ring from non-eulerian polynomials is also found by Yu. N. Maltsev in [2].

Theorem. In the class of rings with 1, the eulerian polynomial

$$P_{UT_n}(x_1, \ldots, x_n, y_1, \ldots, y_n, e_1, \ldots, e_{n-1}) = [x_1, y_1][x_2, y_2]\cdots e_{n-1}[x_n, y_n]$$

forms basis of the ring $UT_n(\mathbb{Q})$. The polynomial P_{UT_n} is built from graph G_{UT_n} displayed on fig.1.

![Graph G_{UT_n}](image)

Figure 1: G_{UT_n}

References
