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Equitable partitions

X : a graph
π = {C1, . . . ,Ct} : a partition of V (X )
π is called an equitable partition if ∀i , j ∈ [t], ∀x , x ′ ∈ Ci ,

|N(x) ∩ Cj | = |N(x ′) ∩ Cj |.

Example
G : a subgroup of Aut(X )
π : the orbit partition of G

=⇒ π is an equitable partition.
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Godsil-McKay switching

Theorem 1 (Godsil-McKay, 1982)
X : a graph
π = {C1, . . . ,Ct ,D} : a partition of V (X )
Assume that π satisfies

{C1, . . . ,Ct} is an equitable partition of V (X ) \ D,

∀x ∈ D, ∀i ∈ [t], |N(x) ∩ Ci | = 0, 12 |Ci | or |Ci |.
Construct a new graph X ′ by interchanging adjacency
and nonadjacency between x ∈ D and the vertices in Ci

whenever x has 1
2|Ci | neighbors in Ci .

=⇒ Spec(X ) = Spec(X ′)

We will call this special cell D a GM cell.
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Outline of this study

X : a SRG
X ′ : a graph obtained from X by an operation s.t.

Spec(X ′) = Spec(X ) (and X ′ ̸≃ X )

⇓
X ′ is also a SRG with the same parameters as X .
“an operation” = GM switching w.r.t. an orbit partition

What SRG do we consider? → The symplectic graph.
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The symplectic graphs

Let R =

[
0 1
1 0

]
.

The symplectic graph Sp(2ν, 2) over F2 is the graph
defined by the following:

V (Sp(2ν, 2)) = F2ν
2 \ {0},

E (Sp(2ν, 2)) = {xy | xTKy = 1},

where K = Iν ⊗ R .

Proposition 2
The symplectic graph Sp(2ν, 2) is a SRG with
parameters (22ν − 1, 22ν−1, 22ν−2, 22ν−2)
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The automorphism group of Sp(2ν, 2)

Theorem 3 (Tang and Wan, 2006)

Aut(Sp(2ν, 2)) ≃ {A ∈ GL2ν(F2) |ATKA = K}.

But Sp(2ν, 2) is vertex-transitive.

We consider GM switching w.r.t. an orbit partition.

↓
We must choose proper subgroups of Aut(Sp(2ν, 2)).

↓

Aut(Sp(2ν, 2))E Aut(Sp(2ν, 2))S
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Fixing a special 4-subset

X = Sp(2ν, 2)
v1, v2, v3 : three distinct vertices of V (X ) s.t.

They are linearly independent

vTi Kvj = 0 (∀i , j ∈ [3])

S = {v1, v2, v3, v4}, where v4 = v1 + v2 + v3.
We consider the action of Aut(X )S .

What we should do
Determination of the orbit partition of Aut(X )S
Finding GM cells
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Why do we consider S ?

Abiad and Haemers considered the following partition.

{S ,V (X ) \ S}

↑
GM cell

They obtained many SRGs with the same parameters as
Sp(2ν, 2).
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The orbit partition of Aut(X )S
x ∈ V (X ).
Since xTKv1 + xTKv2 + xTKv3 + xTKv4 = xTK0 = 0,

#{i ∈ [4] | xTKvi = 1} = 0, 2, 4.

Thus,
V (X ) = S0 ⊔ S2 ⊔ S4,

where Si = {x ∈ V (X ) |#{j ∈ [4] | xTKvj = 1} = i}.
Note that S , ⟨S⟩ ⊂ S0 and ⟨S⟩g = ⟨S⟩ for g ∈ Aut(X )S .

Proposition 4
The orbit partition of V (X ) of Aut(X )S is

{S ,T , S0 \ (S ∪ T ), S2, S4},
where T = ⟨S⟩ \ (S ∪ {0}) = {v1 + v2, v2 + v3, v3 + v1}.
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Finding GM cells

{S ,T , S0 \ (S ∪ T ), S2, S4}

We obtain three switched graphs X S ,X S0\(S∪T ),X S4.
Actually,

X S ≃ switched Sp(2ν, 2) by Abiad and Haemers.
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Not being isomorphic

Four graphs X ,X S ,X S0\(S∪T ),X S4 are not isomorphic ?

→ We consider the number of common neighbors of
three vertices.

X : a graph
For x , y , z ∈ V (X ), define

NX [xy |z ] =

w ∈ V (X ) \ {x , y , z}

∣∣∣∣∣
w ∼ x ,

w ∼ y ,

w ̸∼ z

 .

|NX [xyz | ]| = # common neighbors of three vertices in X
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X : a graph
π = {C1, . . . ,Ct ,Ct+1} : an orbit partition
Assume that π has a GM cell D = Ct+1.

For any i ∈ [t],

{|N(x) ∩ Ci | | x ∈ D} = {0},
{
1

2
|Ci |

}
or {|Ci |},

so
[t] = C0 ⊔ C 1

2
⊔ C1,

where Cj =
{
i ∈ [t]

∣∣∣ |N(x) ∩ Ci | = j |Ci | (∀x ∈ D)
}
.
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X ′ : the switched graph
x , y , z : three distinct vertices of V (X )
The set of pairs of vertices involved with switching is⊔

i∈C 1
2

{
{v ,w}

∣∣∣ v ∈ D,w ∈ Ci

}
.

Considering above, we have to consider many cases to
find |NX ′[xyz | ]|, but in this talk, we introduce a special
case.
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Assume that x ∈ D = Ct+1, y ∈ Ck and z ∈ Cl , where
k ∈ C 1

2
and l ∈ C0 ∪ C1.

Therefore, |NX ′[xyz | ]| is equal to∑
i∈C0⊔C1

|Ci∩NX [xyz | ]|+
∑
i∈C 1

2

|Ci∩NX [yz |x ]|+|D∩NX [xz |y ]|
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The non-zero minimum number

We investigate the non-zero minimum number of
common neighbors of three distinct vertices.
As a result,

X X S X S0\(S∪T ) X S4

22ν−3 1 22ν−5 − 2 22ν−5

The four graphs are not isomorphic to each other.

Thank you for attention !!
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