Akihiro Munemasa
(joint work with Koichi Betsumiya)
Graduate School of Information Sciences
Tohoku University

August 21, 2016
G2S2, Novosibirsk
Strongly regular graphs

A SRG(v, k, λ, μ) is a simple undirected k-regular graph with v vertices such that

- two adjacent vertices have λ common neighbors,
- two non-adjacent vertices have μ common neighbors.
A SRG(v, k, λ, μ) is a simple undirected k-regular graph with v vertices such that

- two adjacent vertices have λ common neighbors,
- two non-adjacent vertices have μ common neighbors.

Example: The Petersen graph.

$$\text{Petersen} = L(K_5) = T(5) = J(5, 2)$$

is a SRG(10,3,0,1).

(line graph of complete, triangular, Johnson)
A SRG(v, k, λ, μ) is a simple undirected k-regular graph with v vertices such that

- two adjacent vertices have λ common neighbors,
- two non-adjacent vertices have μ common neighbors.

Example: The Petersen graph.

\[
Petersen = L(K_5) = T(5) = J(5, 2)
\]

is a SRG$(10, 3, 0, 1)$.

(line graph of complete, triangular, Johnson)
\[L(K_6) = T(6) = J(6, 2) \quad \binom{6}{2} = 15 \]
\[\text{SRG}(\nu = 15, \ k = 8, \ \lambda = 4, \ \mu = 4) \]
Let A be the adjacency matrix, and let $C \subseteq \mathbb{F}_2^{15}$ be the span of the row vectors of A over \mathbb{F}_2.
Then dim $C = 4$.

$L(K_6) = T(6) = J(6, 2)$

SRG(15, 8, 4, 4)
$L(K_6) = T(6) = J(6, 2) \quad \text{SRG}(15, 8, 4, 4)$

Let A be the adjacency matrix, and let $C \subset \mathbb{F}_2^{15}$ be the span of the row vectors of A over \mathbb{F}_2.
Then $\dim C = 4$.

In general, for $T(n)$,
- Tonchev (1988), Brouwer-van Eijl (1992): $\dim C$,
The weight $\text{wt}(x)$ of a vector $x \in \mathbb{F}_2^n$ is the number of 1’s in its entries: $\text{wt}(1, 1, 0, 1, 0) = 3$.
The **weight** $\text{wt}(x)$ of a vector $x \in \mathbb{F}_2^n$ is the number of 1’s in its entries: $\text{wt}(1, 1, 0, 1, 0) = 3$.

We say that a vector $x \in \mathbb{F}_2^n$ is

- **even** $\iff \text{wt}(x) \equiv 0 \pmod{2}$
- **doubly even** $\iff \text{wt}(x) \equiv 0 \pmod{4}$
- **triply even** $\iff \text{wt}(x) \equiv 0 \pmod{8}$
A binary linear code C of length n is a linear subspace of \mathbb{F}_2^n.
A binary linear code C of length n is a linear subspace of \mathbb{F}_2^n.

C is called

$$\begin{align*}
ev\text{en} &\iff x \text{ is even } \quad (\forall x \in C) \\
doubly\text{ even} &\iff x \text{ is doubly even } \quad (\forall x \in C) \\
triply\text{ even} &\iff x \text{ is triply even } \quad (\forall x \in C)
\end{align*}$$

If C is generated by a set of vectors r_1, \ldots, r_k, then
A binary linear code C of length n is a linear subspace of \mathbb{F}_2^n.

C is called

- **even** if $\forall x \in C$ (x is even)
- **doubly even** if $\forall x \in C$ (x is doubly even)
- **triply even** if $\forall x \in C$ (x is triply even)

If C is generated by a set of vectors r_1, \ldots, r_k, then C is even iff,

(i) r_i is even for all $i \in \{1, \ldots, k\}$.
Even, doubly even, and triply even codes

A binary linear code C of length n is a linear subspace of \mathbb{F}_2^n.

C is called

- even $\iff x$ is even $\ (\forall x \in C)$
- doubly even $\iff x$ is doubly even $\ (\forall x \in C)$
- triply even $\iff x$ is triply even $\ (\forall x \in C)$

If C is generated by a set of vectors r_1, \ldots, r_k, then C is doubly even iff,

(i) r_i is doubly even for all $i \in \{1, \ldots, k\}$,
(ii) $\text{wt}(r_i \ast r_j) \equiv 0 \ (\text{mod} \ 2)$ for all $i, j \in \{1, \ldots, k\}$.

(denoting by \ast the entrywise product)
Doubly even codes

If C is generated by a set of vectors r_1, \ldots, r_k, then C is doubly even iff,

(i) r_i is doubly even for all $i \in \{1, \ldots, k\}$,
(ii) $\text{wt}(r_i \ast r_j) \equiv 0 \pmod{2}$ for all $i, j \in \{1, \ldots, k\}$.
Doubly even codes

If C is generated by a set of vectors r_1, \ldots, r_k, then C is doubly even iff,

(i) r_i is doubly even for all $i \in \{1, \ldots, k\}$,

(ii) $\text{wt}(r_i \ast r_j) \equiv 0 \pmod{2}$ for all $i, j \in \{1, \ldots, k\}$.

This is because the mapping

$$f : \{\text{even vectors in } \mathbb{F}_2^n\} \to \mathbb{F}_2$$

defined by

$$f : x \mapsto \frac{\text{wt}(x)}{2} \pmod{2}$$

is a quadratic form.

$$f(\sum_{i=1}^{k} a_i r_i) = \sum_{i=1}^{k} a_i^2 f(r_i) + \sum_{i<j} a_i a_j \text{wt}(r_i \ast r_j).$$
Let A be the adjacency matrix, and let $C \subset \mathbb{F}_2^{15}$ be the span of the row vectors r_1, \ldots, r_{15} of A over \mathbb{F}_2.

(i) $\text{wt}(r_i) = 8 \pmod{4}$, so r_i is doubly even.

(ii) $\text{wt}(r_i \leftrightarrow r_j) = 4 \pmod{2}$ for all $i, j \in \{1, \ldots, 15\}$ with $i \neq j$.

So C is doubly even.

Property too strong for the conclusion? Do these property imply C is triply even? No, in general. We need:

(iii) $\text{wt}(r_h \leftrightarrow r_i \leftrightarrow r_j) = 0 \pmod{2}$ for all $h, i, j \in \{1, \ldots, k\}$.

The number of common neighbors of three vertices $\equiv 0 \pmod{2}$.
Let A be the adjacency matrix, and let $C \subset \mathbb{F}_{15}^2$ be the span of the row vectors r_1, \ldots, r_{15} of A over \mathbb{F}_2.

(i) $\text{wt}(r_i) = 8 \equiv 0 \pmod{4}$, so r_i is doubly even

(ii) $\text{wt}(r_i * r_j) = 4 \equiv 0 \pmod{2}$

for all $i, j \in \{1, \ldots, 15\}$ with $i \neq j$.
Let A be the adjacency matrix, and let $C \subset \mathbb{F}_2^{15}$ be the span of the row vectors r_1, \ldots, r_{15} of A over \mathbb{F}_2.

(i) $\text{wt}(r_i) = 8 \equiv 0 \pmod{4}$, so r_i is doubly even

(ii) $\text{wt}(r_i \ast r_j) = 4 \equiv 0 \pmod{2}$

for all $i, j \in \{1, \ldots, 15\}$ with $i \neq j$.

So C is doubly even.
$L(K_6) = T(6) = J(6, 2) \quad \text{SRG}(15, 8, 4, 4)$

Let A be the adjacency matrix, and let $C \subset \mathbb{F}_2^{15}$ be the span of the row vectors r_1, \ldots, r_{15} of A over \mathbb{F}_2.

(i) $\text{wt}(r_i) = 8 \equiv 0 \pmod{4}$, so r_i is doubly even

(ii) $\text{wt}(r_i \ast r_j) = 4 \equiv 0 \pmod{2}$

for all $i, j \in \{1, \ldots, 15\}$ with $i \neq j$.

So C is doubly even.

Property too strong for the conclusion?
Let A be the adjacency matrix, and let $C \subset \mathbb{F}_2^{15}$ be the span of the row vectors r_1, \ldots, r_{15} of A over \mathbb{F}_2.

(i) \(\text{wt}(r_i) = 8 \equiv 0 \pmod{4} \), so r_i is doubly even

(ii) \(\text{wt}(r_i \ast r_j) = 4 \equiv 0 \pmod{2} \)

for all $i, j \in \{1, \ldots, 15\}$ with $i \neq j$.

So C is doubly even.

Property too strong for the conclusion?

Do these property imply C is triply even?
$L(K_6) = T(6) = J(6, 2)$ \quad SRG(15, 8, 4, 4)

Let A be the adjacency matrix, and let $C \subseteq \mathbb{F}^{15}_2$ be the span of the row vectors r_1, \ldots, r_{15} of A over \mathbb{F}_2.

(i) $\text{wt}(r_i) = 8 \equiv 0 \pmod{4}$, so r_i is doubly even

(ii) $\text{wt}(r_i \times r_j) = 4 \equiv 0 \pmod{2}$

for all $i, j \in \{1, \ldots, 15\}$ with $i \neq j$.

So C is doubly even.

Property too strong for the conclusion?

Do these property imply C is \textbf{triply even}? No, in general. We need:

(iii) $\text{wt}(r_h \times r_i \times r_j) \equiv 0 \pmod{2}$ for all $h, i, j \in \{1, \ldots, k\}$.
\(L(K_6) = T(6) = J(6, 2) \quad \text{SRG}(15, 8, 4, 4) \)

Let \(A \) be the adjacency matrix, and let \(C \subset \mathbb{F}_2^{15} \) be the span of the row vectors \(r_1, \ldots, r_{15} \) of \(A \) over \(\mathbb{F}_2 \).

(i) \(\text{wt}(r_i) = 8 \equiv 0 \pmod{4} \), so \(r_i \) is doubly even

(ii) \(\text{wt}(r_i \ast r_j) = 4 \equiv 0 \pmod{2} \)

for all \(i, j \in \{1, \ldots, 15\} \) with \(i \neq j \).

So \(C \) is doubly even.

Property too strong for the conclusion?

Do these property imply \(C \) is \text{triply even}? No, in general. We need:

(iii) \(\text{wt}(r_h \ast r_i \ast r_j) \equiv 0 \pmod{2} \) for all \(h, i, j \in \{1, \ldots, k\} \).

The number of common neighbors of three vertices \(\equiv 0 \pmod{2} \)
$L(K_6) = T(6) = J(6, 2)$ \quad SRG(15, 8, 4, 4)$T(4n+2)$
The code C generated by the row vectors of the adjacency matrix of $T(4n + 2)$ is triply even.
The code C generated by the row vectors of the adjacency matrix of $T(4n + 2)$ is triply even.

$\dim C = n - 2$.

Note

$$rate = \frac{\dim C}{\text{length}} = \frac{n - 2}{\binom{4n+2}{2}} \rightarrow 0 \quad (n \rightarrow \infty).$$
The code C generated by the row vectors of the adjacency matrix of $T(4n + 2)$ is triply even.

$\dim C = n - 2$.

Note

$$\text{rate} = \frac{\dim C}{\text{length}} = \frac{n - 2}{\binom{4n+2}{2}} \rightarrow 0 \quad (n \rightarrow \infty).$$

Theorem (Betsumiya–M., 2012)

The code C generated by the row vectors of the adjacency matrix of $T(4n + 2)$ is a maximal triply even code.
Code of $T(4n + 2)$ is triply even

The code C generated by the row vectors of the adjacency matrix of $T(4n + 2)$ is triply even.
\[\dim C = n - 2. \]

Note
\[\text{rate} = \frac{\dim C}{\text{length}} = \frac{n - 2}{\binom{4n+2}{2}} \to 0 \quad (n \to \infty). \]

Theorem (Betsumiya–M., 2012)

The code C generated by the row vectors of the adjacency matrix of $T(4n + 2)$ is a maximal triply even code.

Sharp contrast with doubly even codes: rate is always $\approx 1/2$. There are triply even codes with rate $1/4$ whenever $n \equiv 0 \pmod{16}$.
Theorem (Betsumiya–M., 2012)

There are 10 maximal triply even codes of length 48.

9 comes from the classification of doubly even codes of length 24 classified by Pless–Sloane (1975), and the code of $T(10)$ extended by the all-one vector is the only other code.
Theorem (Betsumiya–M., 2012)

There are 10 maximal triply even codes of length 48.

9 comes from the classification of doubly even codes of length 24 classified by Pless–Sloane (1975), and the code of $T(10)$ extended by the all-one vector is the only other code.

Motivation comes from Framed Vertex Operator Algebras (FVOA).

- The moonshine module $V^{\frac{1}{2}}$ has Virasoro frames, and each Virasoro frame gives rise to a triply even code of length 48.
- Lam–Yamauchi (2008) showed that, conversely, every triply even code of length divisible by 16 is obtained from some FVOA.
- The classification lead Lam and Shimakura to discover new FVOA≈CFT conjectured by Schellekens (1993).
$S_6 \cong Sp(4, 2) \cong PGO_4^-(3)$
$S_6 \cong Sp(4, 2) \cong PGO_4^-(3)$

Let $V = \mathbb{F}_3^4$ be equipped with a nondegenerate quadratic form with Witt index 1, for example

$$Q(x_1, x_2, x_3, x_4) = x_1 x_2 + x_3^2 + x_4^2.$$
Let $V = \mathbb{F}_3^4$ be equipped with a nondegenerate quadratic form with Witt index 1, for example

$$Q(x_1, x_2, x_3, x_4) = x_1x_2 + x_3^2 + x_4^2.$$

Then $|X| = 15 = \binom{6}{2}$.

$$X = \{\{\pm x\} \mid Q(x) = 1\}.$$

$S_6 \cong Sp(4, 2) \cong PGO_4^-(3)$
Let $V = \mathbb{F}_3^4$ be equipped with a nondegenerate quadratic form with Witt index 1, for example

$$Q(x_1, x_2, x_3, x_4) = x_1 x_2 + x_3^2 + x_4^2.$$

Then $|X| = 15 = \binom{6}{2}$.

$$\{ \pm x \} \sim \{ \pm y \}$$

\iff $Q(x \pm y) = 0$

\iff the line through $\langle x \rangle$ and $\langle y \rangle$ is a “tangent”

\iff the line $\langle x, y \rangle$ and the surface $Q = 0$ in $PG(3, 3)$ has exactly one point in common.
$PGO_4^- (q)$, q an odd prime power

Let $V = \mathbb{F}_q^4$ be equipped with a nondegenerate quadratic form with Witt index 1, for example, with $\eta \notin (\mathbb{F}_q^\times)^2$,

$$Q(x_1, x_2, x_3, x_4) = x_1x_2 + x_3^2 - \eta x_4^2,$$

$$X = \{ \{ \pm x \} \mid Q(x) = 1 \}.$$
Let $V = \mathbb{F}_q^4$ be equipped with a nondegenerate quadratic form with Witt index 1, for example, with $\eta \notin (\mathbb{F}_q^\times)^2$,

$$Q(x_1, x_2, x_3, x_4) = x_1x_2 + x_3^2 - \eta x_4^2,$$

$$X = \{ \{ \pm x \} \mid Q(x) = 1 \}.$$

Then $|X| = q(q^2 + 1)/2$. Adjacency by tangent.
Let $V = \mathbb{F}_q^4$ be equipped with a nondegenerate quadratic form with Witt index 1, for example, with $\eta \not\in (\mathbb{F}_q^\times)^2$,

$$Q(x_1, x_2, x_3, x_4) = x_1 x_2 + x_3^2 - \eta x_4^2,$$

$$X = \{\{\pm x\} \mid Q(x) = 1\}.$$

Then $|X| = q(q^2 + 1)/2$. Adjacency by tangent. Not SRG unless $q = 3$. Brouwer–Cohen–Neumaier, Section 12.2 shows this is a 3-class association scheme.

Theorem (Betsumiya–M.)

*For any odd prime power q, the code of this graph is triply even, of dimension at least $(q^2 - 1)/2$.***
Proof: k, λ, μ (BCN, Section 12.2)

Let $V = \mathbb{F}_q^4$ be equipped with a nondegenerate quadratic form Q with Witt index 1. Define a graph Γ whose vertex set is

$$X = \{\{\pm x\} \mid Q(x) = 1\},$$

with adjacency

$$\{\pm x\} \sim \{\pm y\} \iff B(x, y) = \pm 1,$$

where

$$B(x, y) = \frac{1}{2}(Q(x + y) - Q(x) - Q(y)).$$
Proof: \(k, \lambda, \mu \) (BCN, Section 12.2)

Let \(V = \mathbb{F}_q^4 \) be equipped with a nondegenerate quadratic form \(Q \) with Witt index 1. Define a graph \(\Gamma \) whose vertex set is

\[
X = \{ \{ \pm x \} \mid Q(x) = 1 \},
\]

with adjacency

\[
\{ \pm x \} \sim \{ \pm y \} \iff B(x, y) = \pm 1,
\]

where

\[
B(x, y) = \frac{1}{2} (Q(x + y) - Q(x) - Q(y)).
\]

The graph has valency \(q^2 - 1 \equiv 0 \pmod{8} \), \(\lambda = 2(q - 1) \equiv 0 \pmod{4} \), \(\mu = 2(q - 1) \) or \(2(q + 1) \equiv 0 \pmod{4} \), depending on \(\langle x, y \rangle \) is external or secant.
Proof: \(k, \lambda, \mu \) (BCN, Section 12.2)

Let \(V = \mathbb{F}_q^4 \) be equipped with a nondegenerate quadratic form \(Q \) with Witt index 1. Define a graph \(\Gamma \) whose vertex set is

\[
X = \{\{\pm x\} \mid Q(x) = 1\},
\]

with adjacency

\[
\{\pm x\} \sim \{\pm y\} \iff B(x, y) = \pm 1,
\]

where

\[
B(x, y) = \frac{1}{2} (Q(x + y) - Q(x) - Q(y)).
\]

The graph has valency \(q^2 - 1 \equiv 0 \pmod{8} \), \(\lambda = 2(q - 1) \equiv 0 \pmod{4} \), \(\mu = 2(q - 1) \) or \(2(q + 1) \equiv 0 \pmod{4} \), depending on \(\langle x, y \rangle \) is external or secant. (if \(q = 3 \))
Proof: the number of common neighbors of three vertices is even

Let $\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle$ be distinct vertices. Their common neighbors are

$$\{\langle z \rangle \mid Q(z) = 1, B(x_i, z) = \pm 1 \ (i = 1, 2, 3)\}.$$
Proof: the number of common neighbors of three vertices is even

Let \(\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle \) be distinct vertices, Their common neighbors are

\[
\{ \langle z \rangle \mid Q(z) = 1, \ B(x_i, z) = \pm 1 \ (i = 1, 2, 3) \}\.
\]

For simplicity, assume \(W = \langle x_1, x_2, x_3 \rangle \) is a nondegenerate 3-dimensional subspace, and consider

\[
\{ \langle z \rangle \mid Q(z) = 1, \ B(x_i, z) = 1 \ (i = 1, 2, 3) \}\.
Proof: the number of common neighbors of three vertices is even

Let $\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle$ be distinct vertices. Their common neighbors are

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = \pm 1 \ (i = 1, 2, 3) \}.$$

For simplicity, assume $W = \langle x_1, x_2, x_3 \rangle$ is a nondegenerate 3-dimensional subspace, and consider

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = 1 \ (i = 1, 2, 3) \}.$$
Proof: the number of common neighbors of three vertices is even

Let $\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle$ be distinct vertices. Their common neighbors are

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = \pm 1 \ (i = 1, 2, 3) \}.$$

For simplicity, assume $W = \langle x_1, x_2, x_3 \rangle$ is a nondegenerate 3-dimensional subspace, and consider

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = 1 \ (i = 1, 2, 3) \}.$$

Since $\exists! x_0 \in W$ with $B(x_i, x_0) = 1 \ (i = 1, 2, 3)$,
Proof: the number of common neighbors of three vertices is even

Let \(\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle \) be distinct vertices, Their common neighbors are

\[
\{ \langle z \rangle \mid Q(z) = 1, \ B(x_i, z) = \pm 1 \ (i = 1, 2, 3) \}.
\]

For simplicity, assume \(W = \langle x_1, x_2, x_3 \rangle \) is a nondegenerate 3-dimensional subspace, and consider

\[
\{ \langle z \rangle \mid Q(z) = 1, \ B(x_i, z) = 1 \ (i = 1, 2, 3) \}.
\]

Since \(\exists! x_0 \in W \) with \(B(x_i, x_0) = 1 \ (i = 1, 2, 3) \),

\[
\{ \langle x_0 + y \rangle \mid Q(x_0 + y) = 1, \ y \in W^\perp \}.
\]
Proof: the number of common neighbors of three vertices is even

Let $\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle$ be distinct vertices, Their common neighbors are

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = \pm 1 \ (i = 1, 2, 3) \}.$$

For simplicity, assume $W = \langle x_1, x_2, x_3 \rangle$ is a nondegenerate 3-dimensional subspace, and consider

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = 1 \ (i = 1, 2, 3) \}.$$

Since $\exists! x_0 \in W$ with $B(x_i, x_0) = 1 \ (i = 1, 2, 3)$,

$$\{ \langle x_0 + y \rangle \mid Q(x_0) + Q(y) = 1, \ y \in W^\perp \}$$
Proof: the number of common neighbors of three vertices is even

Let \(\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle \) be distinct vertices, Their common neighbors are

\[
\{ \langle z \rangle \mid Q(z) = 1, \ B(x_i, z) = \pm 1 \ (i = 1, 2, 3) \}.
\]

For simplicity, assume \(W = \langle x_1, x_2, x_3 \rangle \) is a nondegenerate 3-dimensional subspace, and consider

\[
\{ \langle z \rangle \mid Q(z) = 1, \ B(x_i, z) = 1 \ (i = 1, 2, 3) \}.
\]

Since \(\exists! x_0 \in W \) with \(B(x_i, x_0) = 1 \ (i = 1, 2, 3) \),

\[
\{ \langle x_0 + y \rangle \mid Q(y) = 1 - Q(x_0), \ y \in W^\perp \}.
\]
Proof: the number of common neighbors of three vertices is even

Let $\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle$ be distinct vertices, Their common neighbors are

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = \pm 1 \ (i = 1, 2, 3) \}.$$

For simplicity, assume $W = \langle x_1, x_2, x_3 \rangle$ is a nondegenerate 3-dimensional subspace, and consider

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = 1 \ (i = 1, 2, 3) \}.$$

Since $\exists! x_0 \in W$ with $B(x_i, x_0) = 1 \ (i = 1, 2, 3),$

$$\{ \langle x_0 + y \rangle \mid Q(y) = 1 - Q(x_0), \ y \in W^\perp \} : \text{ even}$$
Proof: the number of common neighbors of three vertices is even

Let $\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle$ be distinct vertices, Their common neighbors are

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = \pm 1 \ (i = 1, 2, 3) \}.$$

For simplicity, assume $W = \langle x_1, x_2, x_3 \rangle$ is a nondegenerate 3-dimensional subspace, and consider

$$\{ \langle z \rangle \mid Q(z) = 1, B(x_i, z) = 1 \ (i = 1, 2, 3) \}.$$

Since $\exists! x_0 \in W$ with $B(x_i, x_0) = 1 \ (i = 1, 2, 3)$,

$$\{ \langle x_0 + y \rangle \mid Q(y) = 1 - Q(x_0), \ y \in W^\perp \} : \text{even}$$
$V = \mathbb{F}_q^4$ is equipped with a nondegenerate quadratic form Q with Witt index 1. The vertex set of Γ is $X = \{\{\pm x\} \mid Q(x) = 1\}$, with adjacency

\[
\{\pm x\} \sim \{\pm y\} \iff B(x, y) = \pm 1,
\]
Dimension $\geq (q^2 - 1)/2$

$V = \mathbb{F}_q^4$ is equipped with a nondegenerate quadratic form Q with Witt index 1. The vertex set of Γ is $X = \{\{\pm x\} \mid Q(x) = 1\}$, with adjacency

$$\{\pm x\} \sim \{\pm y\} \iff B(x, y) = \pm 1,$$

We claim Γ has induced $\frac{q+1}{2}K_{q-1}$.
$V = \mathbb{F}_q^4$ is equipped with a nondegenerate quadratic form Q with Witt index 1. The vertex set of Γ is $X = \{ \{ \pm x \} \mid Q(x) = 1 \}$, with adjacency

$$\{ \pm x \} \sim \{ \pm y \} \iff B(x, y) = \pm 1,$$

We claim Γ has induced $\frac{q+1}{2} K_{q-1}$. Write $V = V_+ \oplus V_-$, where $\dim V_+ = 2$, V_+ contains a nonzero vector x with $Q(x) = 0$, V_- is anisotropic.
$V = \mathbb{F}_q^4$ is equipped with a nondegenerate quadratic form Q with Witt index 1. The vertex set of Γ is $X = \{\{\pm x\} \mid Q(x) = 1\}$, with adjacency

$$\{\pm x\} \sim \{\pm y\} \iff B(x, y) = \pm 1,$$

We claim Γ has induced $\frac{q+1}{2} K_{q-1}$. Write $V = V_+ \oplus V_-$, where $\dim V_\pm = 2$, V_+ contains a nonzero vector x with $Q(x) = 0$, V_- is anisotropic. The following subset of vertices induces $\frac{q+1}{2} K_{q-1}$:

$$Y = \{\langle \lambda x + y \rangle \mid \lambda \in \mathbb{F}_q^\times, y \in V_-, Q(y) = 1\}$$

$$= \{\langle \lambda x + y_i \rangle \mid \lambda \in \mathbb{F}_q^\times, 1 \leq i \leq (q + 1)/2\},$$

since

$$B(\lambda x + y_i, \mu x + y_j) = B(y_i, y_j) = \begin{cases} 1 & \text{if } i = j, \\ \text{not } \pm 1 & \text{otherwise.} \end{cases}$$
Maximality?

Since $\dim C \geq (q^2 - 1)/2$, the rate is at least

$$\frac{\frac{q^2 - 1}{2}}{\frac{q(q^2 + 1)}{2}} = \frac{q^2 - 1}{q(q^2 + 1)} \to 0 \quad (q \to \infty).$$

Are they maximal?
Maximality?

Since \(\dim C \geq (q^2 - 1)/2 \), the rate is at least

\[
\frac{\frac{q^2 - 1}{2}}{\frac{q(q^2 + 1)}{2}} = \frac{q^2 - 1}{q(q^2 + 1)} \rightarrow 0 \quad (q \rightarrow \infty).
\]

Are they maximal?

cf. For \(T(4n + 2) \), the rate is

\[
\frac{n - 2}{\binom{4n+2}{2}}.
\]
Maximality?

Since $\dim C \geq (q^2 - 1)/2$, the rate is at least

$$\frac{\frac{q^2 - 1}{2}}{q(q^2 + 1)/2} = \frac{q^2 - 1}{q(q^2 + 1)} \to 0 \quad (q \to \infty).$$

Are they maximal?

cf. For $T(4n + 2)$, the rate is

$$\frac{n - 2}{\binom{4n+2}{2}}.$$

Thank you for your attention!