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Background and basic definitions
°

Let G = (V(G), E(G)) be a graph, where V(G) is the vertex set
with size n, E(G) C (V) is the edge set.
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the multiplicity of A; (¢ =0,1,...,t). Then the multiset
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is called the spectrum of G.

@ Two graphs are called cospectral if they have the same
spectrum.
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Definition

A graph G is called generalized line graph if there exists an integral
matrix B such that A(G) +2I = BT B.

o If such B exists, every entry of B is 1,—1, or 0 and every
column of B has exactly two nonzero entries.

o Note that A(L(G)) + 2I = B(G)T B(G), where L(G) is the
line graph of G and B(G) is the vertex-edge-incidence matrix
of GG. This shows that every line graph is a generalized line
graph.

@ Since BT B is positive semidefinite, every generalized line
graph has smallest eigenvalue at least —2.

Now, we will introduce two theorems about generalized line graphs.
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A result of Cameron, Goethals, Seidel and Shult

Theorem (Cameron, Goethals, Seidel and Shult, 1976)

Let G be a connected graph with smallest eigenvalue at least —2.
Then either G is a generalized line graph, or G has at most 36
vertices.
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A result of Cameron, Goethals, Seidel and Shult

Theorem (Cameron, Goethals, Seidel and Shult, 1976)

Let G be a connected graph with smallest eigenvalue at least —2.
Then either G is a generalized line graph, or G has at most 36
vertices.

The proof heavily relies on the classification of the irreducible root
lattices.
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A result of Hoffman

Now we give a result of Hoffman.

Theorem (Hoffman, 1977)

Let —1 — v/2 < X\ < —2 be a real number. Then there exists an
integer f(\) such that if G is a graph with smallest eigenvalue at
least A and minimun valency at least f(\), then G is a generalized
line graph.
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A result of Hoffman

Now we give a result of Hoffman.

Theorem (Hoffman, 1977)

Let —1 — v/2 < X\ < —2 be a real number. Then there exists an
integer f(\) such that if G is a graph with smallest eigenvalue at
least A and minimun valency at least f(\), then G is a generalized
line graph.

@ The proof does not rely on the classification of irreducible
root lattices. But you have to pay a price for it. Namely you
need to assume that the minimum valency is large.

@ In this talk, we will give some generalizations the theorem of
Hoffman.
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Local valency

For each vertex z in G, the local graph of G at z is the subgraph
of G induced by the neighbors of x and is denoted by A(z).

The local valency at z is the quantity ‘ZEIE( () 2l \where k(z) is the
valency of z, and is denoted by a(z).

Main theorem
Let ¢ > 2 be a positive integer. Then there exists a positive integer
k(t) such that if a graph G satisfies the following conditions:

Q k(x) > k(t) for all z € V(G);
@ a(x) < Xl for qll ¢ € V(G);
Q@ 'nin(G) > -t -1,
then the adjacency matrix A of G satisfies

A+ (t+1)I=N'N

where N is a (0, 1)-matrix. .
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A geometric interpretation

@ Let GG be a graph with smallest eigenvalue at least —t — 1.
The meaning of this result is that if G satisfies some local
condition, then G is the point graph of a partial linear space
(V(G), L) where each vertex lies in exactly ¢ + 1 lines.

@ Can you check the local condition from the spectrum?

@ Sometimes, namely for example, if you have a regular graph
with exactly four distinct eigenvalues.

o In this case, k(x) and a(x) do not depend on the vertex z, as
the number of triangles through x does not depend on .

@ And the number of triangles in a graph can be calculated
using the spectrum.

o Now, we will give some examples.

o Later in the talk, | will give a more general result.
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Application 1

There exists a positive integer ¢’ such that any graph, that is
cospectral with the Hamming graph H(3,q), and ¢ > ¢/, its
adjacency matrix A satisfies

A+3I=NTN,

where N is a (0, 1)-matrix.
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Application 1

There exists a positive integer ¢’ such that any graph, that is
cospectral with the Hamming graph H(3,q), and ¢ > ¢/, its
adjacency matrix A satisfies

A+3I=NTN,

where N is a (0, 1)-matrix.

Application 2

There exists a positive integer v’ such that any graph, that is
cospectral with the Johnson graph J(v,3), and v > ¢/ its
adjacency matrix A satisfies

A+3I=NTN,

where N is a (0, 1)-matrix.
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@ For Application 1, it can be shown that it is locally the disjoint
union of 3K,_1's. This was already shown by Bang et al.
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Main results, 1
oe

@ For Application 1, it can be shown that it is locally the disjoint
union of 3K,_1's. This was already shown by Bang et al.

@ Moreover, they showed that for ¢ > 36 the Hamming graph
H (3, q) is determined by its spectrum.

@ Van Dam et al. gave two constructions to construct
cospectral graphs with J(v, 3). Application 2 tells us that
they must come from partial linear spaces.
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Hoffman graphs

We will introduce Hoffman graphs. They are very important for
our proof.
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Hoffman graphs, 2

@ A Hoffman graph b is a pair (H, ) of a graph H = (V, E)
and a labeling map p: V' — {f, s}, satisfying the following
conditions:

(1) every vertex with label f is adjacent to at least one vertex with
label s;
(7i) vertices with label f are pairwise non-adjacent.
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Hoffman graphs, 2

@ A Hoffman graph b is a pair (H, ) of a graph H = (V, E)
and a labeling map p: V' — {f, s}, satisfying the following
conditions:

(1) every vertex with label f is adjacent to at least one vertex with
label s;
(7) vertices with label f are pairwise non-adjacent.
@ A vertex with label s called a slim vertex;
A vertex with label f called a fat vertex;
Vs = Vs(h) the set of slim vertices of b;
Vi = V¢(h) the set of fat vertices of b.

@ If every slim vertex has a fat neighbor, we call h fat;
If every slim vertex has at least ¢ fat neighbors, we call b ¢-fat.

@ The slim graph of a Hoffman graph § is the subgraph of H
induced on V;(b).
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Special matrix

@ For a Hoffman graph b, let A be the adjacency matrix of H

A, C
=& o)

in a labeling in which the fat vertices come last.
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ooe

Special matrix

@ For a Hoffman graph b, let A be the adjacency matrix of H

As C
+=(c o)
in a labeling in which the fat vertices come last. The special
matrix S(h) of b is the matrix S(h) := A; — CCT.

@ The eigenvalues of hj are the eigenvalues of S(b).

Note that each row and column of a special matrix is indexed by
slim vertices. For x,y € Vs(h), (CCT),, is the number of common
fat neighbors of x and .

13 /27
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Smallest eigenvalue

Denote by Amin(h) (resp. Amin(G)) the smallest eigenvalue of a
given Hoffman graph b (resp. a given graph G), then we have the
following lemma.
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Concept of Hoffman graphs
®0

Smallest eigenvalue

Denote by Amin(h) (resp. Amin(G)) the smallest eigenvalue of a
given Hoffman graph b (resp. a given graph G), then we have the
following lemma.

e If b’ is an induced Hoffman subgraph of a Hoffman graph b,
then Amin (') > Amin(h) holds.
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Ostrowski-Hoffman limit theorem

One reason why to define the smallest of a Hoffman as we did is
the following:

15 /27



Concept of Hoffman graphs

oe

Ostrowski-Hoffman limit theorem

One reason why to define the smallest of a Hoffman as we did is
the following:

Ostrowski-Hoffman Theorem

Let h be a Hoffman graph. Let G(h,n) be the ordinary graph
obtained from h by replacing each fat vertex f by a slim n-clique
K, (f), and joining all the neighbors of f with all the vertices of
K, (f). Then

Amin(G(h,7)) > Amin(h)-

and

lim Amin(G(5,7)) = Amin(h)-

n—0o0

15 /27



Structure theorem of Hoffman graphs

Structure theorem of Hoffman graphs

In this section we will give some structure theorem of Haffman
graphs.
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Direct Sum

Now we define the direct sum of Hoffman graphs.
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Direct Sum

Now we define the direct sum of Hoffman graphs.

Definition

Let h be a Hoffman graph and h! and h? be two induced Hoffman
subgraphs of ). The Hoffman graph b is called the direct sum of
h! and h2, denoted by h = h @ b2, if and only if b, h2 and b
satisfy the following conditions:
(i) V(h) =V(HHUV(H);
) {Vs(hY), Vi(b?)} is a partition of Vi(b);
(iii) if z € Vs(h?), f € V§(h) and z ~ f, then f € Vi (h?);

) if z € Vs(ht) and y € V4(h?), then = and y have at most one
common fat neighbor, and they have exactly one common fat
neighbor if and only if they are adjacent.

17 /27



Structure theorem of Hoffman graphs
oeo

The main reason for this definition is that the special matrix of
h,S(h), is a block matrix with blocks S(h') and S(h2). That is,

S(h) = (S((?l) S(?)2)>

Blackboard Example

18 /27



Structure theorem of Hoffman graphs
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Definition

If h = b1 P b for some induced Hoffman subgraphs by and bo,
then we call h decomposable. Otherwise b is called
indecomposable.
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Definition

If h = b1 P b for some induced Hoffman subgraphs by and bo,
then we call h decomposable. Otherwise b is called
indecomposable.

Definition

Let & be a family of Hoffman graphs. A Hoffman graph g is called
a B-line Hoffman graph if it is an induced Hoffman subgraph of
h= @2:1 bh; where b; is isomorphic to an induced Hoffman
subgraph of some Hoffman graph in & for i = 1,...,t such that g
and b have the same slim graph.

19/27



Structure theorem of Hoffman graphs
®0

A family of Hoffman graphs

Now we use the above defintions to define a family of Hoffman
graphs.

Definition

Let ¢ be a positive integer. We define &(t) to be the family of
pairwise non-isomorphic indecomposable t-fat Hoffman graphs with
special matrix either (—t — 1) or
(JSl —(t+ 1)1, —J

< <
. JSQ—(t-i-l)IsQ) where 1 < 571,89 < t.
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Structure theorem of Hoffman graphs
®0

A family of Hoffman graphs

Now we use the above defintions to define a family of Hoffman
graphs.
Definition
Let ¢ be a positive integer. We define &(t) to be the family of
pairwise non-isomorphic indecomposable t-fat Hoffman graphs with
special matrix either (—t — 1) or
(JSl —(t+ 1)1, —J

—f Jsy — (t+1)15,

) where 1 < 571,89 < t.

Note that every Hoffman graph in &(t) has smallest eigenvalue
—t — 1.

20 /27
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oe

An important result

Let h® be the Hoffman graph with unique slim vertex adjacent to
t fat vertices.

Let t be a positive integer. Every t-fat Hoffman graph with
smallest eigenvalue at least —t — 1 is a &(¢)-line Hoffman graph.

21/27



Main results,
®000

Some more definitions

To describe our main results using Hoffman graphs, we need two
more definitions.

@ A p-plex is a maximal subgraph in which each vertex is
adjacent to all but at most p of its members.
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Some more definitions

To describe our main results using Hoffman graphs, we need two
more definitions.

@ A p-plex is a maximal subgraph in which each vertex is
adjacent to all but at most p of its members.

@ For each vertex = in G, the local graph of G at x is the
subgraph of G induced by the neighbors of = and is denoted
by A(x).

@ The local valency at z is the quantity w where k(z) is
the valency of z, and is denoted by a(z).




Main results,
0®00

Main result 1

Main theorem (Local valency version)

Let t > 2 be a positive integer and s € {t — 1,t}. Then there
exists a positive integer x(t) such that if a graph G satisfies the

following conditions:
Q k(z) > k(t) for all z € V(G);
Q a(x) < M for all z € V(G);
Q Min(G) > —t—1,

then the following holds:

23 /27



Main result 1

Main results,
0®00

Main theorem (Local valency version)
Let t > 2 be a positive integer and s € {t — 1,t}. Then there
exists a positive integer x(t) such that if a graph G satisfies the
following conditions:
Q k(x) > k(t) for all z € V(G);
Q a(x) < M for all z € V(G);
9 )\min(G) Z =i = 1.
then the following holds:
(a) If s=1t—1, then G is the slim graph of a t-fat &(¢)-line
Hoffman graph;
(b) If s =t, then G is the slim graph of a (t + 1)-fat {H*+1D}-line
Hoffman graph.
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Main result 1

Main theorem (Local valency version)

Let t > 2 be a positive integer and s € {t — 1,t}. Then there
exists a positive integer x(t) such that if a graph G satisfies the
following conditions:

Q k(x) > k(t) for all z € V(G);
Q a(x) < M for all z € V(G);
O \nin(G) > -t -1,

then the following holds:

(a) If s=1t—1, then G is the slim graph of a t-fat &(¢)-line
Hoffman graph;

(b) If s =t, then G is the slim graph of a (t + 1)-fat {H*+1D}-line
Hoffman graph.

v

We already have seen (b) before. (In quite different form.)
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Main results,
feeX Yol

Main result 2

Main theorem (Plex version)

Let t > 2 be a positive integer and s € {t — 1,t}. Then there
exists a positive integer K (t) such that if a graph G satisfies the
following conditions:

Q@ k(z) > K(t) for all z € V(QG);

@ for all z € V(G), a (t? + 1)-plex containing z has order at

most 7k(z);K(t) ;

Q Muin(G) = —t -1,
then the following holds:
(a) If s=1t—1, then G is the slim graph of a ¢-fat &(t)-line
Hoffman graph;
(b) If s =t, then G is the slim graph of a (t + 1)-fat {H*+1D}-line
Hoffman graph.

24 /27



Main results,
oooe

Key idea of the proof. Let G be a graph satisfies three conditions
in main theorem. Then we will construct a Hoffman graph

h(G, m,n)(Associated Hoffman graph of G) obtained from G by
putting some fat vertices which correspond to very dense
subgraphs of G(quasi-clique).
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h(G, m,n)(Associated Hoffman graph of G) obtained from G by
putting some fat vertices which correspond to very dense
subgraphs of G(quasi-clique). Existence of these dense subgraphs
is guaranteed by the Ramsey's theorem and the first condition.
The second conditions are there to make h(G,m,n) t-fat. The
third condition is there to enforce h(G, m,n) to have smallest
eigenvalue at least —t — 1. Then we show that the Hoffman graph
h(G,m,n) is a t-fat &(t)-line Hoffman graph. Since the slim
graph of h(G, m,n) is exactly G, the result follows.
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Key idea of the proof. Let G be a graph satisfies three conditions
in main theorem. Then we will construct a Hoffman graph

h(G, m,n)(Associated Hoffman graph of G) obtained from G by
putting some fat vertices which correspond to very dense
subgraphs of G(quasi-clique). Existence of these dense subgraphs
is guaranteed by the Ramsey's theorem and the first condition.
The second conditions are there to make h(G,m,n) t-fat. The
third condition is there to enforce h(G, m,n) to have smallest
eigenvalue at least —t — 1. Then we show that the Hoffman graph
h(G,m,n) is a t-fat &(t)-line Hoffman graph. Since the slim
graph of h(G, m,n) is exactly G, the result follows.

Remark. We assume t > 2, because of the second condition. For
t = 1, we do not need the second condition. In this case, we
obtain Hoffman original theorem.

25 /27



Main results,
L 1]

Using the plex version of our main theorem and a bound a la
Hoffman on the order of ¢-plexes, we can show:

2-clique extension of a grid

There exists a positive integer ¢’ such that any graph, that is
cospectral with the 2-clique extension of (1 X t2)-grid is the slim
graph of a 2-fat {A\,%,'@'}—Iine Hoffman graph for all t; > to > t'.
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Main results,
L 1]

Using the plex version of our main theorem and a bound a la
Hoffman on the order of ¢-plexes, we can show:

2-clique extension of a grid

There exists a positive integer ¢’ such that any graph, that is
cospectral with the 2-clique extension of (1 X t2)-grid is the slim

graph of a 2-fat {./l\.,m,'@'}—line Hoffman graph for all t; > to > t'.

Remark
@ For the square grid, we could also use the local valency
version of our main theorem, but not for the non-square grids,
as they have five distinct eigenvalues.
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@ Using this result Yang, Abiad and myself showed that the
2-clique extension of the t x t-grid is determined by its
spectrum if ¢ is very large.
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2-clique extension of a grid

There exists a positive integer ¢’ such that any graph, that is
cospectral with the 2-clique extension of (1 X t2)-grid is the slim

graph of a 2-fat {./i\.,m,'@'}—line Hoffman graph for all t; > to > t'.

@ For the square grid, we could also use the local valency
version of our main theorem, but not for the non-square grids,
as they have five distinct eigenvalues.

@ Using this result Yang, Abiad and myself showed that the
2-clique extension of the t x t-grid is determined by its
spectrum if ¢ is very large.

@ This result will be used in the next talk by Sasha Gavrilyuk to
show that certain Grassmann graphs are unique as
distance-regular graphs.
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Thank you for your attention!
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