Реализация автоматов в криotronной вычислительной среде по заданному графу состояний

О.Л. Бандман

В [1] изложена методика реализации логических функций в криotronной вычислительной среде, элементы которой выполняют полный набор соединительных функций ("крест с точкой" — элемент "ρ", "крест без точки" — элемент "β" и полное размыкание — элемент "O") и функцию нормально-замкнутого контакта реле. Методика основана на том, что каждой форме задания логической функции в базе ("И", "ИЛИ", "ИЕ") сопоставляется матрица инцидентий \(T (t_{ij} = \{0,1\}) \), легко преобразуемая в программу настройки вычислительной среды. В [1] показано, как сопоставляется матрица \(T \) для автомата, заданного своими каноническими уравнениями.

В настоящей работе предлагается формальный метод построения подобной матрицы инцидентий непосредственно из графа состояний автомата. Этот метод позволяет избежать иногда довольно сложного перехода от графа состояний к каноническим уравнениям.

I. Форма задания автомата

\[\mathcal{X} = \{x_1, \overline{x}_1, \ldots, x_n, \overline{x}_n\} \] — множество входных переменных и их отрицаний;

\[\mathcal{R} = \{r_1, r_2, \ldots, r_l\} \] — множество состояний входа, \(\tau = \circ \)

\[Q = \{q_1, \overline{q}_1, \ldots, q_p, \overline{q}_p\} \] — множество промежуточных переменных и их отрицаний;

\[\mathcal{K} = \{x_1, \overline{x}_1, \ldots, x_n\} \] — множество промежуточных состояний \(\nu = 2^p \);

\[Z = \{z_1, \overline{z}_1, \ldots, z_m, \overline{z}_m\} \] — множество выходных переменных и их отрицаний;

\[L = \{\lambda_1, \lambda_2, \ldots, \lambda_e\} \] — множество состояний выхода.

Пусть автомат задан графом состояний \(\mathcal{G} \). Множеству вершин графа \(\{v_i\} \) сопоставлено множество \(\mathcal{K} \), множеству дуг \(\{\delta_{ij}\} \) — множество пар входных и выходных состояний \(\{m_{ij}\} \) вида:

\[m_{ij} = \bigvee_{i=1}^{V} \rho_{ij}^\gamma \lambda_{ij}^\gamma, \]

где

\[(\rho_{ij}^\gamma, \lambda_{ij}^\gamma) \in [R \times L]. \]

Входные и промежуточные состояния автомата \(\rho_{ij}^\gamma = o_{ij}^\gamma \ldots o_{ij}^\gamma \) и \(x_i = e_i^\epsilon \ldots e_i^\epsilon \) \((\mathcal{E}, \mathcal{E} \in \{0,1\})\), могут быть выражены в виде конъюнкций:

\[\rho_{ij}^\gamma (x) = \bigvee_{i=1}^{V} \rho_{ij}^x x_{ij}^x \ldots x_{ij}^x, \]

где

\[x_{ij}^0 = x_i, \quad \text{если} \quad o_{ij}^0 = 1, \]

\[x_{ij}^1 = \overline{x}_i, \quad \text{если} \quad o_{ij}^1 = 0, \]

\[q_{ij}^{e_i^1} = q_i, \quad \text{если} \quad e_i^1 = 1, \]

\[q_{ij}^{e_i^0} = \overline{q}_i, \quad \text{если} \quad e_i^0 = 0. \]

Множества входных и промежуточных переменных, входящих в (2), обозначим соответственно \(x_{ij}^\gamma \) и \(q_i \), причем

\[x_{ij}^\gamma = \{x_{ij}^\gamma\} \subset X \quad (\kappa = 1, \ldots, n), \quad Q_i = \{q_i^\epsilon\} \subset Q \quad (\kappa = 1, 2, \ldots, p). \]
Условия детерминированности автомата налагают на функции

\[\rho_{ij}(x) и x_i(x) \] эти функции, удовлетворяющие ограничениям:

1) \(\rho_{ij}(x) \rho_{ik}(x) = 0, \quad i, j = 1, 2, \ldots, \nu; \) \(i \neq k, j \neq k; \) при

2) \(x_i(x) x_j(x) = 0, \quad i, j = 1, 2, \ldots, \nu; \) \(i \neq j; \) при

3) \(\bigvee_{i=1}^{\nu} \rho_{ij}(x) = 0, \quad i = 1, 2, \ldots, \nu; \)

4) \(\bigvee_{i=1}^{\nu} x_i(x) = 1. \)

Кроме того, для асинхронных автоматов, у которых все состояния устойчивы

\[\bigvee_{i=1}^{\nu} \rho_{ij}(x) = 0, \quad i = 1, 2, \ldots, \nu. \]

2. Каскадная реализация автомата

Непосредственный переход от графа состояний автомата к реализующему его схеме в среде осуществляется на основе каскадной реализации [1]. При этом функции переходов и выходов в виде

\[Z_k(t) = \Phi[x(t), Q(t)], \quad k = 1, 2, \ldots, m; \]

\[Q_k(t+1) = \Phi[x(t), Q(t)], \quad k = 1, 2, \ldots, \nu; \]

не используются. Они получаются как результаты выполнения логических операций над некоторыми функциями \(d_j x_i(x, Q) \), характеризующими каждую возможную пару \((x_j, x_i) \in [x \times L].\)

Поставим в соответствие каждому входному состоянию \(\rho_{ij} \) конъюнкцию вида

\[x_i(x) \rho_{ij}(x) = c_{ij}(x, x). \]

Множество всех возможных конъюнкций \([c_{ij}]\) \((i, j = 1, 2, \ldots, \nu; \)

\(i \neq j; \) при \(\nu = 1, 2, \ldots, \nu \) обозначим через \(C \). Мощность этого множества \(\nu \in \mathbb{C}. \)

Разобьем \(C \) на подмножества \(c_{ij} \), где \(c_{ij} \) являются собой все углы, входящие в подмножество \(\mathcal{C}_j \), \(\mathcal{C}_j \) - множество элементарных конъюнкций \(c_{ij}(x, Q) \in C \).
диагностики $c_{jk}(Q, x) \in D$; во втором масштабе реализуются функции $q_{jk}(t+i)$ и x_{jk} в виде диагностики (19) и (20). На условии (5-6) следует, что множество D образует ортогональную систему функций, удовлетворяющую тем же условиям. Это позволяет все диагностики $c_{jk}(Q, x)$ первого масштаба реализовать в виде параллельных ветвей, питаемых одним постоянным током. При этом не возникает необходимости в дополнительной организации сверхпроводящих пучков [5], поскольку существоование такого пути обеспечивается усилением потенциалности диагностики всех c_{jk}, а условие ортогональности обеспечивает его единственность. Для функций второго масштаба эти условия обеспечиваются соотношениями (19).

3. Матрица инцидений асинхронного автомата

Граф состояний G_s поставим в соответствии матрицу инцидений $R = [x_{jk}]$ порядка $\alpha \times \beta$, где $\alpha \in A$, $\beta \in B$. A и B — множества строк и столбцов соответственно. Множеству A ставится в соответствие объединение C, Q и Z, а множеству B — объединение X, Q и D. В соответствии с этим $A = A_c \cup A_q \cup A_z$, $B = B_x \cup B_q \cup B_d$, где A_c, A_q, A_z, B_x, B_q и B_d — подмножества строк и столбцов, соответствующих элементам C, Q, Z, X и D ($A_c \subseteq C$, $A_q \subseteq Q$ и т.д.).

Разобъем матрицу R на 9 подматриц: R_{cx}, R_{cq}, R_{cq}, R_{gq}, R_{gd}, R_{xq}, R_{xq}, R_{cd}, R_{zd} (рис. 1). Элементами каждой из них являются перечисление подмножеств элементов соответствующих строк и столбцов. Построение c-матрицы удобно вести, рассматривая каждую её подматрицу отдельно.

1. R_{cx} — матрица инцидений подмножеств x_{ij} в x.

$\tau_{ij} = 1$, если $\alpha \sim c_{ij}$, $\beta \sim x_k \in x_{ij}$.

(22)

$\tau_{ij} = 0$, если $\alpha \sim c_{ij}$, $\beta \sim x_k \notin x_{ij}$.

Рассмотрим единичные и нулевые в R_{cx} сводится к последовательной записи всех наборов p_{ij} в строках R_{cx}, причем если $\sigma_{ij} = 1$, то единица ставится в столбец $\beta \sim x_k$, если $\sigma_{ij} = 0$, то единица ставится в столбец $\beta \sim x_k$. Одним и тех же наборы следует записывать столько раз, сколько они встречаются в изображении графа.

2. R_{cq} — матрица инцидений подмножеств c_{ij} в Q.

$\tau_{ij} = 1$, если $\alpha \sim c_{ij}$, $\beta \sim x_k \in c_{ij}$.

(23)

$\tau_{ij} = 0$, если $\alpha \sim c_{ij}$, $\beta \sim x_k \notin c_{ij}$.

(24)

4. R_{gq} — квадратная диагональная единичная матрица.

$\tau_{ij} = 1$, если $\alpha \sim x_k$, $\beta \sim x_k$.

(25)

$\tau_{ij} = 0$, если $\alpha \sim x_k$, $\beta \sim x_k$, $k \neq i$.

5. R_{gd} — матрица инцидений подмножеств d_{ij} в D.

$\tau_{ij} = 1$, если $\alpha \sim x_k$, $\beta \sim d_{ij}$, или $\alpha \sim c_{ij}$, $\beta \sim d_{ij}$.

(26)

$\tau_{ij} = 0$, если $\alpha \sim x_k$, $\beta \sim d_{ij}$, или $\alpha \sim c_{ij}$, $\beta \sim d_{ij}$.

Рис. 1.
6. R_{D^d} — матрица индексации подмножеств D^n_h и D^n_h в D.

$\tau_{D^d} = \alpha$, если $x \sim D_h$, $\beta \sim D_h^n$, или $x \sim D_h^n$, $\beta \sim D_h^n$.

$\tau_{D^d} = 0$, если $x \sim D_h^n$, $\beta \sim D_h^n$ и $x \sim D_h^n$, $\beta \sim D_h^n$.

(27)

7. Матрицы $R_{q\bar{q}}$, $R_{\bar{q}q}$ и $R_{q\bar{q}}$ — нулевые.

4. Матрица индексации синхронного автомата

В синхронных автоматах сигналы, соответствующие $\varphi_k(t + 1)$, должны передаваться в цепи φ_k только после прихода тактируемых импульсов. Поэтому необходимо организовать дополнительные запоминающие цепи, срабатывающие от таких импульсов. В качестве таких цепей можно использовать параллельные ветви второго каскада, реализующие функции $\varphi_k(t + 1)$, а выходы их соединить с входами φ_k через промежуточный третий каскад, в котором выполняется только функция отрицания. Для получения задержки на тактируемом втором каскаде должно производиться от генератора тактирующих импульсов.

В связи с этим в матрицу индексации синхронного автомата $R' [\varphi_k]$ придается вводить дополнительно 2ρ строк $(A_q')_i$ и 2ρ столбцов $(B_q')_j$. В полученных (в результате добавления строк $(A_q')_i$ и столбцов $(B_q')_j$) подматрицах единичной становятся только на пересечениях строк и столбцов, соответствующих единичным промежуточным переменным:

$\tau_{\alpha\beta} = 1$, если $x \in A_q'$, $\beta \in B_q'$, $x \sim q_i$, $\beta \sim q_k$, $i = k$.

$\tau_{\alpha\beta} = 0$, если $x \in A_q'$, $\beta \in B_q'$, $x \sim q_i$, $\beta \sim q_k$, $i \neq k$.

(28)

Остальные подматрицы строятся по тем же правилам, что и для асинхронного автомата за исключением $R_{q\bar{q}}$, которая из единичной превращается в нулевую (рис. 2).

5. Сокращение матрицы индексации

Матрица индексации автомата может оказаться сократимой.

Это значит, что в ней может быть уменьшено число строк или столбцов без изменения логических функций автомата.

Поскольку каждая строка $x \in A_q$ или $x \in A_{\bar{q}}$ реализует отдельную функцию второго каскада, то из A_q и $A_{\bar{q}}$ могут быть исключены только те строки и столбцы, которые имеют себе резкие в тех же подмножествах. Такая ситуация мало вероятна, если заданный автомат подвергался рассмотрению с целью минимизации числа состояний.

Наиболее вероятными оказываются случаи, когда удается исключить часть строк из A_q. Эта операция полностью соответствует сокращению д.н.ф. путем тождественных преобразований и сводится к применению следующих правил.

I. Если в подмножестве строк $A_{c_j \delta^i_{\bar{q}}}$ какая-либо α_x — явка покрывается другую $\alpha_{x'}$ — в x', т.е. $\tau_{\alpha \beta} = \tau_{\alpha_{x'} \beta}$ ($i = 1, 2, ..., \delta$), то α_x — в строку можно вычеркнуть.

II. Если в подмножестве строк $A_{c_j \delta^i_{\bar{q}}}$ существует пара строк α_x и $\alpha_{x'}$ различающихся только двумя элементами в столбцах β_1 и β_2, соответствующих одной и той же переменной ($\beta_1 \sim x_1$, $\beta_2 \sim x_2$, или $\beta_1 \sim \bar{x}_1$, $\beta_2 \sim \bar{x}_2$), то
одну из этих строк можно вычеркнуть, причем в оставшейся следует поставить нули в остальных столбцах: β_1 и β_2. В автоматах на устойчивых состояниях каждая пара $(\rho_{ij}, \lambda_{ij})$ на дуге b_{ij} имеет разные $(\rho'_{ij}, \lambda'_{ij})$, на дуге b_{ij}. Если при этом x_i отличается от x_j, только одним знаком, то стро́я

\[k \sim c_{ij} \] исключается. Более того, если при составлении графа G_5 применялось противовоположное кодирование, то все стро́я

\[\alpha \sim c_{ij} \ (i \neq j) \] исключаются, а в оставшихся строках c_{ij} все элементы в столбцах $\beta \sim q_k$, для которых $e_k = e_k'$, заменяются на нули.

Учитывая возможность минимизации матрицы для синхронных автоматов с устойчивыми состояниями, можно сразу строить сокращенную R-матрицу. При этом подмножество R_c должно состоять только из строк и столбцов, соответствующих $c_{ij} (j=1,2,\ldots,v)$.

6. Переход от матрицы инцидентий к программе настройки

Переход от матрицы инцидентий к программе настройки среды производится следующим образом:

1. Каждому элементу матрицы ставится в соответствие элемент поисковой среды.

2. В подматрицах R_{cx}, R_{cq}, R_{qd}, $R_{qd'}$ и $R_{q'd'}$, всем единицам ставятся в соответствие элементы F.

3. В подматрицах R_{cd}, R_{dq}, $R_{q'd}$ и $R_{q'd'}$, всем единицам ставятся в соответствие элементы D.

4. Всем нулям ставятся в соответствие элементы D.

5. К подматрице R_{cx} сверху приписываются столбец из D-элементов. К подматрице R_{cd} (или $R_{q'd}$) сверху приписываются столбец из D-элементов. Эти строки и столбец являются угловыми точками для подвода тока питания первого каскада.

6. Справа к подматрице R_{xq} и R_{xc} (или $R_{q'd}$ и $R_{q'd'}$ для синхронного автомата) приписываются блоки π_q и π_q' размерами $(2\rho \times \rho)$ и $(2m \times m)$ (рис. 3).

Сверху к R_{cq} приписываются блоки π''_q, имеющий вид транспонированного π'_q. Каждая строка π_q совместно с соответствующим столбцом π_q' образует пару узловых точек для подвода и отвода тока питания второго каскада.

7. При реализации синхронного автомата к $R_{q'd}$ сверху и к $R_{q'd'}$ снизу приписываются блоки π_q' и π_q'' соответственно, в которых каждая пара строк образует узловые точки для подвода и отвода токов, соответствующих импульсов.

8. Строки программы $\alpha_c \in R_z (z=1,2,\ldots,2m)$ являются выходами автомата.

9. Строки автомата являются столбцами $\beta_k \in B_x (k=1,2,\ldots,2m)$.

6. Оценка сложности реализации автомата в среде

Сложностью реализации автомата в среде, очевидно, надо называть число элементов среды, занятых схемой автомата. Поскольку при переходе от матрицы инцидентий к программе настройки размеры последней определяются размерностью R (или R'), то сложность реализации может быть выражена непосредственно через число входных, промежуточных и выходных состояний.

Размерности матриц R и R' легко определяются через мощности множеств A и B.

$$ |R| = (a \times b) = (c + 2m + 2\rho)(2n + 2\rho + d), \quad (29) $$

$$ |R'| = (a' \times b') = (c + 2m + 4\rho)(2n + 4\rho + d). $$
Подставив в (29) выражение (I3) и (I6) и учитывая число элементов, необходимых для подвода тока питания, получим сложность реализации в среде любого автомата с c входами, l выходами и v промежуточными состояниями.

Для асинхронного и синхронного автоматов соответственно

$$N(x, l, v) = [\sigma x + \log_2(xv)^2 + l][xv + \log_2(xv)^2 + l] + 2(\log_2 x)^2(\log_2 y)^2,$$

$$N'(x, l, v) = [\sigma x + \log_2(xv)^2 + l][xv + \log_2(xv)^2 + l] + 4(\log_2 x)^2(\log_2 y)^2.$$ (30)

Рис. 4.

Рис. 5.

Рис. 6.

ПРИМЕЧАНИЕ. Асинхронный автомат задан графом состояний (рис. 4). Сокращенная матрица R имеет размерность $(a \times b) = 18 \times 16$ и изображена на рис. 5, а соответствующая ей программа настройки — на рис. 6.

ЛИТЕРАТУРА

1. О. Л. Бандман. Реализация автоматов в кристаллной вычислительной среде. Труды 1 Всесоюзной конференции по вычислительным системам, вып. 2. 1968.

2. Э. Б. Яровинов, Ю. Р. Косарев. Вычислительные системы высокой производительности, Новосибирск, 1966.

Поступила в редакцию
9.11.1966 г.