РАСЧЕТ ФУНКЦИЙ НАДЕЖНОСТИ И
ВОССТАНОВИМОСТИ ОДНОРОДНЫХ УНИВЕРСАЛЬНЫХ
ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

З.А. Хорошевская

В работе рассчитываются функции надежности и функция восстановимости однородной универсальной вычислительной системы при произвольных начальных условиях и произвольном числе восстанавливаемых устройств.

Приводится программа для расчета функции надежности, записанная на АЛГОЛе. Результаты иллюстрируются примерами вычислительных систем.

Имеется однородная универсальная вычислительная система (УВС), состоящая из \(N \) элементарных машин (ЭМ) \([1]\). Систему обслуживают \(m \) восстанавливаемых устройств, \(1 \leq m \leq N \). Время безотказной работы ЭМ и время восстановления отказавшей ЭМ определяется по экспоненциальным законам с параметрами \(\lambda \) и \(\mu \), соответственно \([2]\).

Множество всех состояний системы \(E = \{0, 1, 2, \ldots, N\} \), разобьем на два подмножества: \(E_1 \) и \(E_2 \), \(E_1 \cup E_2 = E \). Если система находится в состоянии \(i \in E_1 \), то система исправна, если \(i \in E_2 \), система неисправна.

Производимость в момент времени \(t \) однородной УВС является функция

\[
Q(t) = \begin{cases} \lambda_1 t \omega, & \text{если в момент времени } t > 0 \text{ система находится в состоянии } i \in E, \\ 0, & \text{если } t > 0 \text{ или } i \in E_2, \end{cases}
\]

где \(\omega \) — производительность элементарной машины.

Путем выбора \(\lambda_1 \) может быть выбрана любая зависимость произ-
уравнение (1) на \(e^{-st} \) и пронтегрируем его по \(\varepsilon \). Применим преобразование Лапласа

\[
\alpha_k(s) = \int_0^\infty e^{-st} p_k(t) \, dt, \quad k = 0, 1, \ldots, N - 1,
\]

получим алгебраическую систему уравнений:

\[
\begin{aligned}
\alpha_k(s) &= (N-k+1)\alpha_{k+1}(s) + \sum_{j=0}^{k-1} \alpha_j(s) \delta_{k-j}, \\
\alpha_k(s) &= (N-k)\alpha_k(s) + \sum_{j=k+1}^{N-1} \alpha_j(s) \delta_{k-j}, \\
\alpha_k(s) &= (N-k+1)\alpha_{k+1}(s) + \sum_{j=0}^{k-1} \alpha_j(s) \delta_{k-j}, \\
\end{aligned}
\]

множители которых позволяют вычислить корни \(\Delta_{N-1}(s) \), например, с помощью метода пологого деления [6]. Если \(\alpha_0, \alpha_1, \ldots, \alpha_{N-1} \) — корни \(\Delta_{N-1}(s) \), то

\[
\frac{\Delta_j(s)}{s} = \frac{\Delta_j(s)}{\Delta_{N-1}(s)} = \frac{\alpha_{N-j}}{s + \alpha_{N-j}},
\]

где

\[
\alpha_{N-j}/s = \frac{\Delta_j(s)}{\Delta_{N-1}(s)} = \frac{\Delta_j(s)}{\Delta_{N-1}(s) - \alpha_j \Delta_{N-1}(s) - \alpha_j}.
\]

(5)

Решая (2) по правилу Крамера, найдем

\[
\alpha_{N-1-j}(s) = \frac{(N-j)!}{(N-j)!} \frac{\Delta_j(s)}{\Delta_{N-1}(s)},
\]

где \(\Delta_j(s) \) и \(\Delta_{N-1-j}(s) \) определяются по рекуррентным соотношениям:

\[
\Delta_k(s) = (N-k+1)\alpha_{k+1}(s) + \sum_{j=0}^{k-1} \alpha_j(s) \delta_{k-j}, \quad k = 0, 1, \ldots, N - 1,
\]

(3)

После обращения преобразования Лапласа вероятность

\[
P_{N-1-j}(t) = \int_0^\infty \alpha_{N-1-j}(s) e^{-st} \, ds,
\]

где \(c \) — контур, охватывающий нули знаменателя.

Корни \(\Delta_{N-1-j}(s) \) легко найти, как система многочленов \(\Delta_k(s) \), \(k = 0, 1, \ldots, N - 1 \), удовлетворяющая соотношению (1), обладает свойствами [3, 5]:

1) все корни \(\Delta_k(s) \) различны и отрицательны;
2) корни соседних многочленов \(\Delta_{N-j}(s) \) и \(\Delta_j(s) \) чередуются.

3) сумма корней многочленов \(\Delta_k(s) \) равна

\[
-\alpha_j = \frac{(2N-k-1)}{2} \frac{k}{k}, \quad \text{если } k \leq N,
\]

\[
-\alpha_j = \frac{(2N-k-1)}{2} \frac{k}{N-k+1}, \quad \text{если } k > N,
\]

(6)

Учитывая (4) — (6), получим

\[
P_{N-1-j}(t) = \frac{(N-j)!}{(N-j)!} \left[\frac{\Delta_j(0)}{\Delta_{N-1-j}(0)} + \sum_{k=0}^{N-j} \Delta_j(-\alpha_k) e^{-\alpha_k t} \right].
\]

(7)

Используя (3), легко доказать, что

\[
\Delta_j(0) = \frac{N!}{(N-j)!} \lambda^j
\]

(8)

Подставляя (8) в (7), получим

\[
P_{N-1-j}(t) = \frac{(N-j)!}{(N-j)!} \sum_{k=0}^{N-j} \Delta_j(-\alpha_k) e^{-\alpha_k t}.
\]

(9)

Таким образом, нестандартная функция надежности будет равна

\[
R(t) = \frac{(N-j)!}{(N-j)!} \sum_{k=0}^{N-j} \Delta_j(-\alpha_k) e^{-\alpha_k t}.
\]

(9)
Функция восстановимости

Функция восстановимости [2]

\[U(t) = \sum_{j=0}^{\infty} \frac{\alpha_j e^{-\beta_j t}}{j!}, \]

где \(\alpha_j \) — число исправных ЭМ при \(t = 0, \ j \in E_j \);

\(\beta_j \), \(j = 1, 2, \ldots, \tau_j \) — корни полинома \(\Delta_j(S) \);

\(\Delta_j(S) \) и \(\Delta_j'(S) \) определяются рекуррентным соотношением:

\[\Delta_j(S) = S \Delta_{j+1}(S) - \sum_{k=1}^{j} \frac{j!}{k!} \Delta_k(S) \Delta_{j-k+1}(S), \quad 0 \leq k \leq \tau_j, \]

\[\Delta_j'(S) = \frac{S}{\Delta_0(S)} \Delta_j(S) - \frac{S}{\Delta_1(S)} \Delta_j'(S), \quad \Delta_0(S) = 1, \quad \Delta_1(S) = S + \mu \tau_j. \]

Полученные результаты позволяют рассчитать нестационарную функцию надежности \(R(t) \) и нестационарную функцию восстановимости \(U(t) \) для однородных универсальных вычислительных систем любой производительности.

Приведем несколько примеров таких систем.

В качестве ЭМ возьмём "Минск-22" [7].

На рис.1-4 изображена функция \(R(t) \) в зависимости от числа \(\tau_j \) основных машин в системе для \(N = 100, \tau_j = 1, \mu = 0,7 \) I/час, \(\tau_j = 0 \) при различных \(\lambda \); на рис. 1 \(\lambda = 0,01 \) I/час; на рис. 2 \(\lambda = 0,02 \) I/час; на рис. 3 \(\lambda = 0,03 \) I/час; на рис. 4 \(\lambda = 0,05 \) I/час.

На рис. 5 представлена функция \(U(t) \) для \(\tau_j = 1, 2, \ldots, 6, \)
Рис. 8

Рис. 9
Выводы

Для того, чтобы надежность системы, состоящей из 100 ЭМ и имеющей одно восстанавливаемое устройство с интенсивностью восстановления 0,7 1/час при условии, что в начальный момент все ЭМ исправны, была достаточно высокой, желательно, чтобы интенсивность отказов ЭМ была не более 0,001 1/час. В противном случае зависимость надежности от числа основных машин в системе значительно повышается. Хотя надежность и остается достаточно высокой, тем не менее при дальнейшем увеличении интенсивности отказов надежность системы резко падает.

Кроме того, дальнейшее увеличение числа восстанавливающих устройств повышает надежность системы несущественно (рис. 5), по-этому более целесообразно иметь одно восстанавливающее устройство с большей интенсивностью восстановления (рис. 9).

Функция надежности УУС будет решено подать, если в начальный момент все ЭМ, составляющие структурную избыточность, исправны; необходимо иметь некоторый запас (рис. 6), но функция восстановления увеличивается равномерно с ростом числа исправных машин в системе (рис. 7).

Функция надежности сильно зависит от числа основных машин в системе лишь тогда в том случае, когда λ велико (рис. 1-3), при малых же λ, например λ = 0,001 1/час (рис. 4), орать число основных машин в системе менее 50 не имеет смысла. Функция восстановления при изменении числа основных ЭМ практически меняется на одну и ту же величину (рис. 6).

Таким образом, однородные УУС высокой производительности и высокой надежности могут быть построены на существующей физико-технологической базе.

Приложение

Приведем программу для расчета нестационарной функции надежности, записанную на АЛГОЛе [8]. По этой программе можно рассчитать надежность любой однородной системы на начальном периоде ее функционирования. Для этого необходимо задать следующие значения:

1. N - число ЭМ в системе;
2. λ - число основных ЭМ в системе;
3. μ - число восстанавливающих устройств;
4. λ - интенсивность отказов в ЭМ;
5. μ - интенсивность восстановлений;
6. f - число исправных ЭМ в системе при t = 0;
7. s - степень точности счета корней A(5);
8. c0 - степень приближения R(τ) к нулю;
9. τ - начальное время;
10. Δ - шаг изменения времени.

На печать выводится значение:

\[R(T) = \frac{T^0}{T^+ Δ, R(T+Δ)} \]

где τ - время, начиная с которого R(τ) < δ .

begin integer N, n, m, k, i, j, p; real λ, μ, c1, c2, σ, φ1, φ2, f, s, b, x, α, ρ, t, c, Δ, R; ω;

тущ (N, m, λ, μ, c1, c2, σ, ω, ω, λ, Δ);

begin real array P1 [0: N-n-1], P2 [0: N-n], P3 [0: N-n+1], α [0: N-n+1], 1 [0: 1], Δ [1: N-n+1];

for i := 2 step 1 until (N-n+1) do P3 [i] := 0; S := -N - λ;

for i := 0 step 1 until (N-n+1) do

G [0] := 1; H := k + 1; if k = k then for i := 0 step 1 until j do

J [i] := P2 [i]; if k < k then c1 := (k+1) × m + μ else

c1 := (N-k+1) × m + μ; if k < k then c2 := (N-k+1) × k × μ else c2 := (N-k) × m + μ × μ; for i := 0 step 1 until k do P3 [i+1] := P3 [i+1] + c2 × P2 [i]; if k < k then \[S := \sum \] (N-k)x × k × μ else \[S := \sum \] (N-k)x × k × μ × μ; S := 0; φ1 := P3 [k+1]; for i := 0 step 1 until (k-1) do begin α := c [i]; b := c [i+1];
\[\varphi_2 := P_2[0] \] for \(r = 1 \) step 1 until \((k+1)\) do \(\varphi_2 := \varphi_2 \times b + P_2[r] \); \[d := \varphi_2; \quad D := (a+b)/2; \quad f := P_2[0]; \]
for \(r = 1 \) step 1 until \((k+1)\) do \(f := f \times x + P_2[r] \); if abs \((t) \leq \delta \) then begin \[
\begin{align*}
[k+1] := x; \\
\varphi_1 := S + x; \quad \varphi_2 := f; \quad \varphi_1 := d
\end{align*}
\] end else if sign \((\varphi_1) =\) \(\text{sign}(f)\) then begin \(a := x; \quad \varphi_1 := f; \quad \text{go to D end end; \quad } \beta[k+1] := \sum S; \quad \text{for } i := 1 \text{ step 1 until } (k+1) \text{ do } \varphi[i] := \beta[i]; \text{ if } k < N-n \text{ then begin for } i := 0 \text{ step 1 until } k \text{ do } P[i] := P[i+1]; \text{ for } i := 0 \text{ step 1 until } (k+1) \text{ do } \varphi[i] := P[i]; \text{ go to E end; \quad } i := 0 \text{ step 1 until } (N-n-1) \text{ do } P[i] := P[i+1] \times (N-n+1-i); \text{ for } r := 1 \text{ step 1 until } (N-n+1) \text{ do begin } x := \varphi[r]; \quad f := P_5[0]; \quad \text{for } i := 1 \text{ step 1 until } (N-n+1) \text{ do begin } x := \varphi[r]; \quad f := J[0]; \quad \text{for } i := 1 \text{ step 1 until } j \text{ do } f := f \times x + J[i]; \quad G[r] := f \text{ end; } \rho := 1; \quad \text{for } i := 0 \text{ step 1 until } (N-j-n) \text{ do } \rho := \rho \times (N-j-i); \quad \text{for } i := 1 \text{ step 1 until } (N-n+1) \text{ do } R := R + \exp(\alpha[i] \times t) / \alpha[i] \times G[i] / \beta[i]; \quad R := R \times \rho \quad \text{выход } (t, R); \quad \text{if abs}(\rho) > \omega \text{ then begin } t := t + \Delta \quad \text{go to T end end end}
\]

Литература

1. Э.В. Щелевинов, В.Г. Косарев. Одинодонные универсальные вычислительные системы высокой производительности. Новосибирск, Изд-во "Наука", Сибирское отделение, 1966.

Поступила в редакцию 10.11.1969 г.