ОБ ОДНОМ ПОДХОДЕ К ДИАГНОСТИКЕ НЕИСПРАВНОСТЕЙ
КОМБИНАЦИОННЫХ СХЕМ

Р.С. Гольдман

В работе рассматривается диагностика неисправностей комбинационных схем, построенных из функциональных элементов "И", "ИЛИ", "НЕ", "НЕ-И", "НЕ-ИЛИ". Под неисправностью будем понимать константу 0(1) на любом входе (выходе) любого элемента схемы. Предполагается, что в схеме может быть произвольное сочетание неисправностей.

Пусть имеется одноразрядная комбинационная схема \(M \), реализующая функцию \(f(\ x_1, \ldots, \ x_n) \). Неисправности \(\ell \)-го элемента схемы обозначим через \(S_{\ell} \), если выход \(\ell \)-го элемента постоянно имеет значение \(\ell \); через \(S_{\ell}\bar{\ell} \), если \(\ell \)-й вход \(\ell \)-го элемента постоянно имеет значение \(\ell \) (где \(\ell \in \{0,1\} \)).

Рассмотрим комбинационную схему без разветвлений, упорядоченную по рангам [1]. Пусть в схеме имеется сочетание неисправностей.

\[S = \{ S_{\ell_1}, S_{\ell_2}, \ldots, S_{\ell_n} \} \]

Обозначим через \(f_S(\ x_1, \ldots, \ x_n) \) функцию, реализуемую схемой при этом сочетании неисправностей.

Пусть неисправность \(S_{\ell_1, \ell_2, \ldots, \ell_n} \in S \) характеризуется тем, что в любом пути, связывающем \(\ell \)-й элемент с выходом схемы...
нёт неисправностей элементов, имеющих ранг больше ранга \(i \)-го элемента, и пусть \(S_0 < S \) — множество всех таких неисправностей. Тогда множество неисправностей \(S_e \) эквивалентно множеству неисправностей \(S \), то есть
\[
f_{S_e}(x, ..., x_n) \equiv f_S(x, ..., x_n)
\]
Для иллюстрации рассмотрим схему, представленную на рис. I.

\[
S = \{ S_{2-o}, S_{4-o}, S_{5-o}, S_{1-o}, S_{0-o} \}
\]

Очевидно, что неисправность \(S_{4-o} \) не оказывает влияния на функцию, реализуемую схемой при сочетании неисправностей \(S \), так как выход элемента 2 постоянно равен 0. Следовательно, множество \(S_0 \) состоит из неисправностей
\[
S_{2-o}, S_{5-o}, S_{1-o}, S_{0-o}
\]

Для решения задачи диагностики неисправностей будем использовать структурно-аналитический способ описания схем в виде эквивалентной нормальной формы (ЭНФ) [2].

Для схемы (рис. I) ЭНФ имеет вид:
\[
y = a_{61} \land b_{62} \land \neg a_{63} \lor \neg a_{64} \lor a_{65} \lor b_{66} \lor e_{42} \lor \neg b_{34} \lor f_{35} \lor \neg a_{73} \lor \neg a_{74}
\]
Обозначим последовательности элементов путей следующим образом:
\[
621 = 1
\]
\[
421 = 2
\]
\[
531 = 3
\]
\[
8731 = 4
\]

Тогда ЭНФ примет вид:
\[
y = a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f \lor g
\]
Функция \(f_S \), реализуемую схемой при сочетании неисправностей, можно получить путем построения схем ЭНФ константами 0(1).

Будем говорить, что буква \(Q_k \) ЭНФ фиксируется равной \(\bar{c} \), если путь, ассоциируемый с этой буквой [2], связывает \(\bar{c} \)-й вход \(\bar{c} \)-го элемента, где \(S_{ij} \) \(\in S \), с выходом схемы через четное число элементов "НЕ", "НЕ-И", "НЕ-ИЛИ", в равной \(\bar{c} \)-й в противном случае.

Так, в схеме (рис. I) неисправность \(S_{2-o} \) фиксирует буквы \(a \) и \(\bar{b} \); неисправность \(S_{5-o} \) — букву \(e \); неисправность \(S_{7-o} \) — букву \(\bar{c} \); неисправность \(S_{0-o} \) — букву \(\bar{c} \)

Для схемы можно составить таблицу путей, которая определяет, каким образом неисправности схемы фиксируют буквы ЭНФ. Строки таблицы путей соответствуют буквам ЭНФ, столбцы — неисправностям схемы. На пересечениях \(\bar{c} \)-ой строки и \(\bar{c} \)-го столбца приводится значение 1, если \(\bar{c} \)-й неисправности фиксирует \(\bar{c} \)-ю букву ЭНФ равной 1; и 0, если \(\bar{c} \)-й неисправности фиксирует эту букву равной 0.

Таблица путей для схемы (рис. I) представлена в табл. I.
Комбинационную схему M произвольной конфигурации, где i-й элемент может быть связан с выходом схемы несколькими путями, можно провести к эквивалентной схеме без разветвлений M', имеющей ту же ЭНФ [1], что и схема M.

Рассмотрим схему M, представленную на рис. 2.

Обозначим пути схемы следующим образом:

- $2I$ - 1
- $62I$ - 2
- $643I$ - 3
- $43I$ - 4
- $53I$ - 5

Таблица 1

<table>
<thead>
<tr>
<th></th>
<th>1 - 5</th>
<th>5 - 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

Наклон-право

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
ЭФН и обратная ЭФН [2] для схемы \(M \) с учетом принятых обозначений имеют вид:

\[
y = a_1 b_2 v a_2 c_2 v d_2 e_2 f_2 v c_3 e_3 f_3 v a_4 e_4 f_4,
\]

\[
\bar{y} = a_2 b_2 c_2 d_2 e_2 f_2 v a_2 c_2 d_2 e_2 f_2 v b_2 c_2 d_2 e_2 f_2.
\]

На рис. 3 представлена схема без разветвлений \(M' \), эквивалентная схеме \(M \) [1]. Элементы, входящие с выходом схемы \(M \) несколькими путями, обозначены в схеме \(M' \) тем же номером, что и в схеме \(M \), с индексом пути, связывающим этот элемент с выходом схемы.

Очевидно, что неисправность \(S_{y-t} \) схемы \(M' \), где \(C - \) элемент связан с выходом схемы путями \(1, 2, \ldots, k \), эквивалентна неисправности \(S_{y-t} \) схемы \(M \):

\[
S_{y-t} = S_{y-t} + S_{y-t} + \ldots + S_{y-t}.
\]

Например, неисправность \(S_{y-t} \) в схеме \(M' \). Из эквивалентного представления схемы \(M \) видно, что функция \(f_3 \) реализуемой схемой при сочетании неисправностей, можно получить так же, как и для схем без разветвлений, рассматривая схему \(M' \).
Пусть в схеме рис. 2 имеется сочетание неисправностей

\[S = \{ S_{ε_{1−1}}, S_{ε_{1+1}} \} \]

Сочетание неисправностей \(S \) в схеме \(M' \) эквивалентно сочетанию неисправностей

\[S' = \{ S_{ε_{1−1}}, S_{ε_{1+1}}, S_{ε_2} \} \]

в схеме \(M' \).

Тогда сочетание неисправностей

\[S' = \{ S_{ε_{1−1}}, S_{ε_{1+1}}, S_{ε_2} \} \]

Эти неисправности фиксируют букву \(\epsilon \), равно 0, и буквы

\(\delta_3, \delta_3', \delta_4', \) равны 1.

Таблица путей для схемы \(M \) представлена в табл. 2.

Таким образом, определев, как зафиксированы буквы ЭНФ, покажем, как можно с помощью таблицы путей локализовать неисправности схемы.

Обозначим через \(Q_\epsilon \), произвольное множество букв \(\epsilon \) — го терма, через \(f_{Q_\epsilon} \) — функцию, подключающую в результатах фиксирования множества букв \(Q_\epsilon \) в \(\epsilon \) — терм ЭНФ, равным \(\epsilon \).

ОПРЕДЕЛЕНИЕ. Множество букв \(Q_\epsilon \) превращается в \(\epsilon \) — терм на входном наборе \(\epsilon \), если

\[f_{Q_\epsilon}(e) \neq f(e) \]

и значение всех букв \(\epsilon \) — го терма, за исключением букв \(Q_\epsilon \), равно 1 на этом входном наборе.

В дальнейшем будем использовать проверку \(Q_\epsilon - 1 \) буквой ЭНФ (обратной ЭНФ).

Пусть в схеме \(M (M') \) имеется сочетание неисправностей \(S (S') \). Обозначим через \(\mathcal{P}_\epsilon \) множество буквы, проверяемое в \(\epsilon \) — терме, в котором сочетание неисправностей \(S \) фиксирует все буквы из \(\mathcal{P}_\epsilon \), равны 1 и не фиксирует ни одной буквы, равной 0. \(\mathcal{P}_{\epsilon, j-1} \) множество букв ЭНФ и обратной ЭНФ, зафиксированных неисправностью \(S_{\epsilon, j-1} \).

ОПРЕДЕЛЕНИЕ. Несправность \(S_{\epsilon, j-1} \) \(\in \) \(S' \)

называется существенной, если существует, по крайней мере, одно множество \(\mathcal{P}_\epsilon \), содержащее хотя бы одну букву из \(\mathcal{P}_{\epsilon, j-1} \).

Тогда в ЭНФ (обратной ЭНФ) имеется, по крайней мере, один терм, содержащий \(\mathcal{P}_\epsilon \). Из определения следует, что любая неисправность \(S_{\epsilon, j-1} \) \(\in \) \(S' \), которая фиксирует равной 1 хотя бы одну букву из \(\mathcal{P}_\epsilon \), является существенной.

ТЕОРЕМА 1. Если неисправность \(S_{\epsilon, j-1} \) является существенной, то для любого множества букв \(Q_\epsilon \) \(\in \) \(D_{\epsilon, j-1} \) найдется, по крайней мере, один терм ЭНФ (обратной ЭНФ), в котором нет ни одной буквы, зафиксированной равной 0 и который содержит множество \(Q_\epsilon \).

ДОКАЗАТЕЛЬСТВО. Пусть в схеме \(M (M') \) имеется сочетание неисправностей \(S (S') \) и пусть \(S_{\epsilon, j-1} \) \(\in \) \(S' \) — существенная неисправность. Представим схему \(M' \) в виде, показанном на рис. 4.

Пусть \(\epsilon = 1 \) и \(j \) — вход элемента \(\epsilon \) связан с выходом схемы через четное число элементов "И", "И-И", "И-И-И".

Считая \(x \) независимой входной переменной, запишем ЭНФ схемы \(M' \) в виде

\[Y = A \lor B \]

\[A = \alpha_1 \lor \alpha_2 \lor \ldots \lor \alpha_m \]

\[B = \alpha_1 \lor \alpha_2 \lor \ldots \lor \alpha_n \]

(1)

(2)

(3)

ЭНФ для подсхемы \(w \) с выходом \(x \) представлен в виде

\[x = \alpha_1 \lor \ldots \lor \alpha_j \lor \ldots \lor \alpha_n \]

(4)

ЭНФ для схемы \(M' \) получается в результате подстановки выражений (2), (3) в (1).

\[Y = \alpha_1 \lor \ldots \lor \alpha_j \lor \ldots \lor \alpha_n \]

(5)

(6)

Очевидно, что все буквы ассоциируются с путями, связанными \(j \) — вход элемента с выходом схемы, зафиксированы неисправностью \(S_{\epsilon, j-1} \) равными 1.

Так как неисправность \(S_{\epsilon, j-1} \) является существенной, то, согласно определению, существует, по крайней мере, один терм \(\alpha_1 \lor \ldots \lor \alpha_j \), в котором нет ни одной буквы, зафиксированной равной 0.
О. Следовательно, в любых термах ЭНФ, полученных из выражения

\[a_i \ (z_1, v, \ldots, z_\ell) \]

нит ни одной буквы, зафиксированной разной 0, и взаимно \(Q_\ell \in P_{z \neq \ell} \)

contains хотя бы в одном из термов выражения (4).

Доказательство аналогично, если \(\ell = O(1) \) и \(z \neq j \) вход \(z^2 \) —
go-элемента связан с выходом схемы через источник нечетное (четное) число элементов "НЕ", "НЕ-И", "НЕ-ИЛИ" схемы.

Обозначим через \(Q_\ell \) множество одиночных ненашихностей, каждая из которых фиксирует все буквы из множества \(O \) равным 1; \(\gamma_{Q_\ell} \) — множество наборов, каждый из которых проверяет любое \(Q \in O \) в \(\kappa \) — терте.

Сформулируем следующее утверждение.

ТЕОРЕМА 2. Пусть в схеме \(N \) имеется сочетание ненаправленности \(\gamma \). Тогда множество \(G_\gamma \) не содержит ни одной существенной ненаправленности из \(\gamma' \), если для каждого из термов, в которых содержится, по крайней мере, одна буква из \(\gamma \), в множестве \(\gamma_{Q_\ell} \) существует хотя бы один набор \(\gamma_{Q_\ell} \) на котором при проверке схемы получен неправильный результат.

ДОКАЗАТЕЛЬСТВО. Пусть \(\gamma \) — существенная ненаправленность схемы \(N \). Тогда на основании теоремы 1 существует, по крайней мере, один терм ЭНФ (обратной ЭНФ), в котором ни одна буква не зафиксирована равной 0 и который содержит множество \(Q \). Тогда при проверке \(Q \in O \) в этом терме получается неправильный результат, что противоречит условию теоремы.

Обозначим через \(G \) множество одиночных ненаправленностей схемы.

СЛЕДСТВИЕ. Пусть при проверке схемы на множество входных наборов \(\gamma \) было получено правильный результат. \(Q_\ell, \ldots, Q_\ell \) — множество букв, каждое из которых удовлетворяет условию теоремы 2. Тогда множество

\[G_\gamma = G \cap \left(\bigcup_{i=1}^{\ell} G_{Q_i} \right) \]

содержит все существенные ненаправленности схемы.

Очевидно, что при любом сочетании ненаправленностей в схеме существует хотя бы одна существенная ненаправленность.

Следствие теоремы 2 позволяет сформулировать следующий алгоритм диагностики произвольного сочетания ненаправленностей.

1. Для схемы строится таблица путей.
2. Схема проверяется на множестве входных наборов теста и фиксируется результат проверки каждого набора.
3. По результатам проверки определяются множества \(Q_\ell, \ldots, Q_\ell \), удовлетворяющие условию теоремы 2.
4. Из таблиц путей определяются множества ненаправленностей \(G_{Q_\ell}, \ldots, G_{Q_\ell} \).
5. Определяется множество

\[G_\gamma = G \cap \left(\bigcup_{i=1}^{\ell} G_{Q_i} \right) \]

ЗАМЕЧАНИЕ. При определении \(Q_\ell, \ldots, Q_\ell \) возможен случай, когда множество \(Q_\ell \in G_{Q_i} (j \neq i) \). Тогда множество \(G_{Q_i} \subseteq G_{Q_j} \), следовательно, достаточно определить множество \(Q_\ell \).

Применим алгоритм диагностики на примере схемы рис.
2. Пусть в схеме имеется сочетание ненаправленностей

\[S = \{ S_{92}, S_{671} \} \]

и схема проверяется на наборах множества
являющегося одиночным диагностическим тестом.

1. Таблица путей схемы рис.2 представлена в табл. 2.

2. При проверке схемы на каждом из наборов множества \(\mathcal{N} \) будет получен правильный результат.

3. Выпишем множества \(Q_x \), проверяемые на наборах множества \(\mathcal{N} \).

Верные пять наборов проверяют следующие \(Q_x \) в ЭНФ:

\[
\mathcal{N} = \mathbf{a} \cup \mathbf{b} \cup \mathbf{c} \cup \mathbf{d} \cup \mathbf{e} \cup \mathbf{f} \cup \mathbf{a}_x \cup \mathbf{b}_x \cup \mathbf{c}_x \cup \mathbf{d}_x \cup \mathbf{e}_x \cup \mathbf{f}_x
\]

1) 0 0 0 0 1 0 1 0 0 1
2) 0 0 0 1 1 0 1 1 0 1
3) 0 0 0 0 1 1 1 0 1 1
4) 0 0 0 0 1 1 1 0 1 1

1) \(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c} \cup \mathbf{d} \cup \mathbf{e} \cup \mathbf{f} \cup \mathbf{a}_x \cup \mathbf{b}_x \cup \mathbf{c}_x \cup \mathbf{d}_x \cup \mathbf{e}_x \cup \mathbf{f}_x \)
2) \(\mathbf{b} \cup \mathbf{c} \cup \mathbf{d} \cup \mathbf{e} \cup \mathbf{f} \cup \mathbf{b}_x \cup \mathbf{c}_x \cup \mathbf{d}_x \cup \mathbf{e}_x \cup \mathbf{f}_x \)
3) \(\mathbf{c} \cup \mathbf{d} \cup \mathbf{e} \cup \mathbf{f} \cup \mathbf{c}_x \cup \mathbf{d}_x \cup \mathbf{e}_x \cup \mathbf{f}_x \)
4) \(\mathbf{d} \cup \mathbf{e} \cup \mathbf{f} \cup \mathbf{d}_x \cup \mathbf{e}_x \cup \mathbf{f}_x \)
5) \(\mathbf{e} \cup \mathbf{f} \cup \mathbf{e}_x \cup \mathbf{f}_x \)

Остальные пять наборов проверяют следующие \(Q_x \) в обратной ЭНФ.

\[
\mathcal{N} = \mathbf{a}_x \cup \mathbf{b}_x \cup \mathbf{c}_x \cup \mathbf{d}_x \cup \mathbf{e}_x \cup \mathbf{f}_x \cup \mathbf{a}_x \cup \mathbf{b}_x \cup \mathbf{c}_x \cup \mathbf{d}_x \cup \mathbf{e}_x \cup \mathbf{f}_x
\]

6) 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1
7) 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8) 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9) 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10) 1

С учетом замечаний определим множества \(Q_i \), удовлетворяющие условиям теоремы 2:

\[
Q_1 = \mathbf{a}_x, \quad Q_2 = \mathbf{b}_x, \quad Q_3 = \mathbf{c}_x, \quad Q_4 = \mathbf{d}_x, \quad Q_5 = \mathbf{e}_x, \quad Q_6 = \mathbf{f}_x
\]

4. Множества \(G_{Q_1} \ldots G_{Q_6} \) состоят из ненаправленных, фиксирующих равными 1 буквы \(\mathbf{a}_x, \mathbf{b}_x, \mathbf{c}_x, \mathbf{d}_x, \mathbf{e}_x, \mathbf{f}_x \), соответственно. Эти множества находятся из табл. 2.

Множества \(Q_{Q_1} \ldots Q_{Q_6} \) состоят из ненаправленных, фиксирующих равными 0 буквы \(\mathbf{a}_x, \mathbf{b}_x, \mathbf{c}_x, \mathbf{d}_x, \mathbf{e}_x, \mathbf{f}_x \), соответственно (табл. 2).

Множество \(G_{Q_{Q_1}} \) состоит из ненаправленных \(S_{Q_{Q_1} \rightarrow Q_{Q_2}} \), \(S_{Q_{Q_1} \rightarrow Q_{Q_3}} \), \(S_{Q_{Q_1} \rightarrow Q_{Q_4}} \), \(S_{Q_{Q_1} \rightarrow Q_{Q_5}} \), \(S_{Q_{Q_1} \rightarrow Q_{Q_6}} \), фиксирующие равными 0 одновременно буквы \(\mathbf{b}_x \) и \(\mathbf{c}_x \).

5. Множество

\[
G_0 = G \cap \bigcup_{i=1}^{6} G_{Q_i} =
\]

\[
= \{ S_{Q_{Q_1} \rightarrow Q_{Q_2}}, S_{Q_{Q_1} \rightarrow Q_{Q_3}}, S_{Q_{Q_1} \rightarrow Q_{Q_4}}, S_{Q_{Q_1} \rightarrow Q_{Q_5}}, S_{Q_{Q_1} \rightarrow Q_{Q_6}} \}.
\]
Некоторые из ошибок S_{2-0}, S_{2+0}, S_{2-0} неразличимы. В результате локализации определено множество некоррекций:

S_{2-0}, S_{2+0}, S_{2-0}, S_{2-0},

среди которых есть заданные некоррекции схемы.

Источники

1. Кобринский Н. Е., Трахтенберг Б. А. "Введение в теорию конечных автоматов". Физматгиз, 1962.

Поступила в редакцию
15. IV. 1971