НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ СТРУКТУР
ОДНОРОДНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

В.А. Воробьев, В.В. Корнеев

Предложены алгебраические модели структур однородных вычислительных систем (ОСС) [1] и ряд структурных характеристик: потенциальная и реальная m-коммутируемость, функция структурной живучести подсистем и дозрельность структур, плотность взаимодействий и внутренняя эффективность. Приводятся результаты исследований живучести и дозрельности ОСС методом статистических испытаний, подтверждающие значимость и полезность введенных характеристик.

I. О проблематике теории ОСС

I.I. Однородные вычислительные системы, как перспективное направление развития вычислительной техники, — осохепризнаны, это касается не только многочисленных инженерных разработок вычислительных систем IV поколения, но и теоретических исследований. Теория ОСС предоставляет собой широкую, достаточно самостоятельную и быстро развивающуюся часть основ теории вычислительных систем.

Данная статья написана как введение в проблематику четырех работ [2–5]. Её цель — дать представление о месте этих работ в теории ОСС, очеркнуть круг очередных задач, везде некоторые дополнительные меры качества функционирования ОСС и со ответствующую терминологию. Таким образом, будет описана та программа, в пределах которой уже получены некоторые результаты и которая, как нам кажется, открывает широкую перспективу для дальнейших исследований.
1.2. В настоящее время получены расчетные формулы для надежности [6-11], осуществимости решения задач [12,13] и эффективности функционирования ОСВ [14-16]. При этом подобно вузу - чена теоретическая модель ОСВ, построенная при следующих предпосылках:

1) ОСВ есть коллекция взаимодействующих, стохастически независимых и конечных элементарных машин (ЭМ);
2) система связей между ЭМ абсолютно надежна и допускает любые коммутации;
3) производительность коллектива ЭМ прямо пропорциональна числу машин в нём;
4) ОСВ есть система массового обслуживания с простыми потоками заявок на обслуживание.

Условно назовем эту модель идеальным коллективом.

При таком взгляде на ОСВ в поле зрения исследователей попадает только множество ЭМ, как таковое, и его потенциальные возможности обеспечить требуемые характеристики.

По этой причине предлагаемые алгоритмы функционирования ОСВ [17-21] устанавливают только внешнюю дисциплину коллектива ЭМ, то есть выделяют задачи из пакета их потока (управляемого или неуправляемого) и выделяют их решения подсистемы (подсистемы) ЭМ так, чтобы минимизировать суммарное время решения задачи за счет задержек в их решениях.

Таким образом, в рамках теории идеального коллектива отсутствует задача исследования, макроструктуры (I) ОСВ.

1.3. Имеется ряд работ [22-28], в которых так или иначе рассматриваются вопросы организации макроструктуры ОСВ. Общим недостатком является отсутствие единых подходов. Более того, полученные результаты разрознены и не могут быть естественно признаны к исследованию, упомянутым в предыдущем пункте.

В работе предлагается достаточно общее математическое описание макроструктур ОСВ, позволяющее рассматривать с едиными позиций многие вопросы теории ОСВ, в первую очередь:

1) структурная живучесть ОСВ, то есть возможность обеспечить связность требуемых подмощий при ненадежной системе связей между ЭМ. (В дальнейшем термин подсистема будет употребляться только для связных подмощий ЭМ);
2) коммутируемость ОСВ, то есть возможность структуры обеспечить несколько одновременных взаимодействий между подсистемами ЭМ;
3) внутреннюю дисциплину ОСВ, то есть авторскими обслуживания внутренних потоков заявок, процессу производства путей в структуре, контролю, устранению последствий ошибок, диагностики и т. д. же.

2. Математическая модель структуры ОСВ

2.1. По определению [1], ОСВ есть множество "однородных и однонаправленных" ЭМ. Требования "однородных ЭМ" можно удовлетворить, взяв несколько экземпляров одной и той же ЭМ и обеспечив их однородными системными устройствами, обеспечивающими взаимодействия между ЭМ. Характер взаимодействий (i-0 и j-0 ЭМ, обеспечивая связь между ними, фиксируется маткой).

Из упомянутых макроструктур ОСВ остается множество \(A = \{ \mathcal{E}_1, \ldots, \mathcal{E}_J \} \), где \(J = \{0,1, \ldots, N-1\} \) и множество связанных пар ЭМ, помеченных отношениям \(s_{ij}, \ s \in J^2 \). Информационный граф, или макроструктура ОСВ, есть

\[
\begin{bmatrix} A, S(s_{ij}) \end{bmatrix}
\]

(1)

2.2. Рассмотрим подробнее требования "однородных соединений". Оно достаточно широко и существенно в конкретизации. В порядке уточнения "однородности" соединений потребуем, чтобы макроструктура ОСВ представляла однородно с точки зрения любой её вершине, то есть все ЭМ были бы эквивалентны не только по своим описанным, но и по своему расположению в макроструктуре.

Формально это означает, что для любой пары номеров (i, j) существует такая перенумерация элементов макроструктуры, что элемент j получит номер i, и новый информационный гран при этом будет неотличим от исходного. Такая перенумерация (будем кратко обозначать её \(j \mapsto i \)) есть автоморфизм вида

\[
\sigma : j \mapsto i = [j, i, \ldots, j, \ldots] = [j, i, \ldots, i, \ldots]
\]
удовлетворяющих условию сохранения связей и их отметок:

$$\forall i,j,k,\ell \in \mathcal{A} \left\{ (j \to i) \land (\ell \to k) \rightarrow s_{ij} \land s_{\ell k} \right\}.$$ \hspace{1cm} (2)

Пусть теперь \(z = \{ s (j \to i) / (j \to i) \in \mathcal{A} \} \) — трёхместное множество автоморфизмов, удовлетворяющих условиям (2). \(E \) — также трёхместная подстановка, \(\Theta \) — динамическое оперирование (последовательное присоединение) подстановок. Ясно, что система \((A, E, \Theta) \) представляет собой транзитивную группу с единицей \(E \).

Образующие группы могут быть выбраны так, что макроструктура совпадает с диаграммой Койна своей группы автоморфизмов [29] с точностью до направлений дуг информационного графа. Это обстоятельство позволяет в дальнейшем не различать понятия макроструктуры, информационный граф и структура.

Число образующих группы \(z \) будем называть размерностью структуры. В м -мерной структуре каждая вершина соединена с \(2m \) соседями за исключением тех случаев, когда об - равная представляет собой нормальную ациклическую подгруппу порядка \(2 \). (Это возможно только при четных \(N \).) Такие образующие будем называть вырожденными. Соответственно и структура могут быть частично или полностью вырожденными. В частности, таковыми являются \(D_n \) — графы [22], моделирующие \(n \) — мерный евклидийский куб.

2.3. Только что полученная алгебраическая модель структуры ОС является достаточно простой и находит широкое применение, например, в теории динамических систем [29,30]. Основное внимание в упомянутых работах уделяется графовой классификации их остовных структур, мыслимых как фрагменты бесконечных плоских рёбер.

Теория структур ОС, напротив, не может быть применена к структурам, в которых конечные множества элементов структур в этом случае не играют столь важной роли. Итак, нас интересуют только конечные элементы структур. Множество последних ещё больше, что для нас возможности для исследования структур.

3. КАКС-структур

3.1. Основные требования, предъявляемые к структуре ОС, сводятся к следующим:

1. Структура ОС должна обеспечивать возможность построения неограниченного множества простых и эффективных операций, пригодных для широкого класса ОС различных мощностей и размерностей.

2. Структура ОС должна обладать максимальной живучестью и коммутируемостью. Это означает, что подобластям заданного класса должны существовать в ней при выходе из строя как можно большего числа ЭМ и связей. Кроме того, структура должна обеспечивать одновременное взаимодействие как можно большего числа нераспространяющихся подсистем.

3.1.1. Вернее, требование налагает дополнительные ограничения на класс структур, подлежащих использованию. Второе касается выбора структур заданного класса, наиболее эффективно использующих аппаратуру.

3.1.1. Алгебра структуры должна быть простой и хорошо определенной. В дальнейшем мы ограничимся рассмотрением структур ОС, обладающих конечной абелевой группой автоморфизмов. В таких структурах, как известно, проблема точки зрения, а следовательно, и проблема распознавания и прохождения путей, ведущих от одной вершины к другой, на информационном графе.

3.1.2. Будем рассматривать только симметричные информационные графы, удовлетворяющие условию \(s_{ij} = s_{ji} \). Таким образом, для соседних ЭМ ОС равновероятны не только относительно всей системы в целом, но и относительно друг друга.

3.1.3. Структура должна быть изотропной, то есть такая, что одна и та же информация может передаваться по связям с одинаковыми отметками. Это ограничение обеспечивает нам простую модель компьютера.

Кроме того, в силу изотропности, можно отмечать от информационного смысла отметок ради. В дальнейшем отметки ради будут иметь чисто алгебраический смысл, то есть будут символами тех образующих групп автоморфизмов (таких как пример), применение которых приводит к переопределению \(j \) -го элемента на место \(i \) -го, связанного с \(i \) -м соответственно помечённым ребром.
3.I.4. Любой конечный абстрактный и симметрический граф (КАГ) - структура может быть описана определением соответствующей группы автоморфизмов. Можно найти в выделенном классе структур подходящие, допускающие более простые параметрические описания. На эти параметры смотрят на основании операционных систем. Таким образом, мы обеспечиваем параллельность ОСБ без дополнительного программного обеспечения.

3.2. Сравнивающим характеристикам КАГ-структура в целом является диаметр d и средний диаметр \bar{d}. Диаметром называется максимальное расстояние между любыми двумя вершинами информационного графа (под расстоянием d_{ij} здесь понимается минимальное число ребер информационного графа, соединяющих i с элементом $j, i, j \in V$).

\[d = \max_{i,j} \{ d_{ij} \}, \]
\[\bar{d} = \frac{1}{N} \sum_{i,j} d_{ij} \cdot k_{ij}, \]

где k_{ij} - число вершин, находящихся на расстоянии ℓ от любой выделенной, N - число вершин информационного графа. В силу однородности КАГ-структура d не зависит от выбора "выделенной" вершины (равенство вершин (28)). Интуитивно ясно, что чем меньше d, тем выше качество структуры. В работе (28) это утверждение подтверждалось для разработанного метода однородности, который позволял находить минимальное число элементов информационного графа в пределах заданного диаметра d при заданной степени подобия. Для КАГ-структур задача оценивается с помощью следующим образом: для заданного порядка n и заданной размерности σ найти КАГ-структуру, доставляющую мин d.

4. Структурные характеристики ОСБ

4.1. Как уже отмечалось [6-21], важным мотивом, определяющим тот или иной выбор структурных характеристик ОСБ, является их совместимость с теорией идеального коллектива. Последняя позволяет апеллировать теоремы массового обслуживания, теоремы игр, математического программирования и исследований операций. Теория структур в этом виде, как она представлена выше, апеллирует к алгебре.

По нашему мнению, результаты обоих подходов могут быть выражены в терминах одной теории, а именно - теории существенности [31]. Это фактически уже сделано в работах [12,13] для идеального коллектива. Ниже мы предложим модели жесткости и коммутируемости ОСБ, выдержанные в том же духе.

Такой выбор характеризуется интересом еще и тем, что открывает возможности для исследования потенциальной эффективности ОСБ по предельным возможностям. Более того, понятие существенности позволяет хорошо организовать статистические эксперименты при исследованиях соответствующих характеристик на моделях. Этот факт демонстрируется в [23].

4.2. Подмножество взаимодействующих ЭМ, из которых одна передает информацию, а остальные принимают, будем называть коммутируемой (безотносительно к тому, по каким каналам происходит взаимодействие). С точки зрения внутренний эффект коммутируемости ОСБ важна способность структуры обеспечить некоторый минимум однопозиционно существующих непересекающихся коммутируемости, то есть коммутируемость.

В качестве мер коммутируемости можно взять вероятность $P(d, m, \ell)$ того, что в системе d может одновременно существовать не менее чем m произвольных коммутируемых, причем каждая связь обслуживает не более чем ℓ взаимодействий.

Однако $\ell = 1$. В этом случае будем называть структуру m-коммутируемой, если $P(d, m, 1) > P_{min}$, где P_{min} - некоторый запас заданной порог коммутируемости. При $P_{min} = 1$ структура строго m-коммутируема, при $P_{min} = 1 - m^{-1} \frac{N}{2}$ полностью коммутируема, при $P_{min} = 1 - m^{-1} \frac{N}{2}$ частично коммутируема, при $P_{min} = 1 - m^{-1} \frac{N}{2}$ - независимо числа N.

Введенное в [23] понятие ℓ-покрываемости соответствует случаю $P(d, \ell) \leq \frac{N}{2}, \ell = 1$.

Величину $k(d, m, \ell)$ будем называть потенциальной m-коммутируемостью.

В общем случае структура m-коммутируемости $K(d, m, \ell)$ зависит от характеристик коммутируемости в внутренней дисциплине (Д) ОСБ. Коммутируемость, в частности, можно характеризовать вероятностью взаимодействия многих на расстоянии d_{ij}, то есть плотностью взаимодействия $\rho(d_{ij})$. Меру коммутируемости $K(d, m, \ell, \rho(d_{ij}))$ будем называть реальной.
4.3. В качестве характеристики структурной живучести возвы- шем вероятность \(R(\sigma, \rho_k, \rho_c, \tau_{min}) \) того, что в структуре \(d \) существует подсистема ранга \(\tau \geq \tau_{min} \) при заданных коэффициентах -
- вах готовности \(\rho_k, \rho_c \), соответственно коммутаторов и связей.

Полная система ранга \(\tau_{min} \) состоящим, если функция структурной живучести \(R(\sigma, \rho_k, \rho_c, \tau_{min}) \) больше некоторого порога: \(\tau_{min} \). Определенной вероятности,

Иными словами, избыточность \(e = \frac{N}{\tau_{min}} \) до-
- таточна.

Для сравнения различных структур будем использовать интегральную осо-
- бенность подсистемы заданного ранга, то есть вероятность того, что заданная избы-
- точность достигается при случайном и равновероятном выборе значений \(\rho_k \) и \(\rho_c \) из отрезка [0,1]:

\[Q(\sigma, e) = \frac{1}{N} \sum_{\{\sigma, \rho_k, \rho_c, e\} \in \tau_{min}} \]

Величину \(Q(\sigma, e) \) назовем добротностью структуры.

4.4. В качестве параметров, описывающих эффективность той
- или иной внутренней дисциплины ОБС, могут быть взяты характери-
- стики систем массового обслуживания, применяемых в работах [6-21]. ОБС предоставляют замкнутой системой массового обслу-
- живания с \(\lambda \) источниками заявок (ЗМ) и \(m \) обслуживающими аппара-
- тами (коммутаторами). Важнейшими особенностями такой структуры являются:

1) случайное число обслуживаемых аппаратов, заданная реальная коммутируемость \(\chi(\sigma, m, \rho, \alpha(i,j)) \);
2) взаимоотношение между абонентами, заданное плотностью взаимодействия \(\rho(\alpha(i,j)) \).

5. Некоторые свойства живучести подсистем и
- добротности структур ОБС

5.1. Введение одной новой меры (или характеристики) объек-
- та должно быть определено по крайней мере следующим дополнительным условием:

1) указанием на то, как измерять данную характери-
- стику;
2) указанием на способы использования измеренной характеристики;
3) исследованием адекватности меры, то есть обнаружением ее закономерного поведения при заданном изменении других параметров.

Что касается способа измерения предложенных выше структурных характеристик, то наиболее доступным является статистиче-
- ский эксперимент на ЭВМ. Методика организации таких исследований дана в [2]. Оцениваем также и способы использования таких мер, как коммутируемость и живучесть подсистем.

В данном пара-
- графе приведены неко-
- торые результаты мо-
- делирования структур,
- позволяющие оценить адекватность понятия "добротность". Заодно
- была проверена гипо-
- теза, высказанная в [28] о том, что луч-
- шими структурами яв-
- ляются информационные графы минимального диаметра.

5.2. Исследова-
- ны живучесть под-
- систем при уровне из-
- быточности: \(e = 1,5 \),
- \(e = 2 \) и \(e = 2,5 \); уро-
- нех, резонансности:

\[R_{\tau_{min}} = 0,9 \] для всех возможных двумерных КАИС-структур порядка \(\mathcal{N} = 15 \) и \(\mathcal{N} = 30 \). (Таких оказалось 6 -- для \(\mathcal{N} = 15 \) и 20 -- для \(\mathcal{N} = 30 \).)

На рис. 1 приве-
- дены графики функции

\[R(\sigma, \rho_k, \rho_c, e) = 0,9 \]
для двух структур порядка $N = 30$, уровней изотопности $\varepsilon = 2$ и в промежутке $[0,5; 1,0]$ значений ρ_k, ρ_{cd}. Отсутствие, соответствующая кривой 1, показана на рис.2, кривой II — на рис.3. Они имеют соответственно следующие группы автоморфизмов:

![Рис. 3](image)

\[a_1: \alpha^5 = 1; \alpha^6 = \varepsilon; \alpha^8 = 6\alpha; \]

\[a_2: \alpha^5 = 1; \alpha^6 = \varepsilon; \alpha^8 = 6\alpha. \]

На рис. 4 приведены два семейства кривых (I и II) добротности как функции среднего диаметра \overline{d}:

\[Q(u, \varepsilon, \rho_{min}) = 2 \{ Q, \{ R(u, \rho_k, \rho_{cd}, \varepsilon) \} = 0 \} \]

при значениях $\varepsilon = 0,5$ для кривой I; $\varepsilon = 0,2$ для 2; $\varepsilon = 1,5$ для 3.

5.3. Результаты этого эксперимента впервые сводятся к следующим утверждениям:

- Жизнечутость подсистем и добротность структур тем больше, чем меньше \overline{d}. Таким образом, при выборе структур необходимо минимизировать средний диаметр.

- Результаты теории идеального коллектива должны применяться после исследования структурных характеристик. Так, например, в оптимальной [4] структуре (рис.3, $N = 30$) при абсолютно надежности линий связи ($\rho_{cd} = 1$) для обеспечения живучести подсистемы ряда $r = 15$ на уровне $\rho_{min} = 0,9$ необходима готовность $\rho_k \geq 0,64$. Для структуры, показанной на рис.2, при аналогичных требованиях необходима готовность $\rho_k \geq 0,76$. Эта разница совершенно неувязывается в теории идеального коллектива.

- Добротность является сильною ориентированной характеристикой структур. По данным эксперимента, можно высказать следующую гипотезу:

\[0, \rho_{min} \{ Q_1(a_1, \varepsilon, P_{min}) > Q_2(a_2, \varepsilon, P_{min}) \} \]

\[\forall 0, \rho_{cd}, P_{min} \{ R_1(a_1, \varepsilon, P_{cd}, P_{min}) \geq R_2(a_2, \varepsilon, P_{cd}, P_{min}) \}. \]

5.4. Наиболее общий характеристикой структурной живучести может быть интегральная добротность:

\[Q(u) = \frac{1}{N} \sum_{i=1}^{N} Q(u, z, P), \]

где P — некоторый, например заданный стандартный порог осуществимости. Интегральная добротность зависит только от типа структуры.

Итак, была предложена достаточно общий модель структуры ОВС и выделен класс КАИС-структур, наиболее подходящих для ко-
пользовании. Введены характеристики структур, адекватность которых подтверждена экспериментально.

Дальнейшие исследования должны ответить на следующие вопросы:
1) Как выбрать КАИС-структуры минимального среднего диаметра?
2) Какие свойства КАИС-структур особенно важны для программирования и существуют ли другие описания этих структур (хотя бы для некоторых классов), кроме групповых?
3) Как влияет комплектуемость ОС и взаимодействие между ЭМ на внутреннюю эффективность систем?

Список этих можно продолжить, но скажем, что для продолжения следует вспомнить о системности изъясных пояснений. Мы ограничимся здесь лишь теми вопросами, которые касаются работ [2-5].

Литература
1. Бернгров Э.В., Косарев В.Г. Однородные универсальные вычислительные системы высокой производительности. Новосибирск, "Наука", 1966.
2. Воробьёв В.А., Бернгров В.В. Метод статистических испытаний при исследовании характеристик систем. Новосибирск, стр. 70-83.
3. Воробьёв В.А. Пространственные структуры однородных вычислительных систем. Новосибирск, стр. 38-49.
4. Юргенс В.В. О микроструктурах однородных вычислительных систем. Новосибирск, стр. 17-34.
5. Воробьёв В.А. Комплексность и внутренняя эффективность однородных вычислительных систем в едином частном случае. Новосибирск, стр. 59-69.
7. Хоревский В.Г. О двух классах однородных универсальных вычислительных систем. В кн.: Труды I Всесоюзной конференции по вычислительным системам (Новосибирск, "Наука"). Новосибирск, 1966, вып. 1, стр. 70-84.
12. Хоревский В.Г. Об осуществимости решения задач на однородных вычислительных системах. В кн.: Вычислительные системы. Новосибирск, 1972, стр. 38-47.
15. Хоревская Э.Г. Влияние показателей вычислительной системы на ожидаемый доход при ее эксплуатации. Там же, стр. 29-37.
16. Шум Л.С. Об экономичности однородных вычислительных систем и вычислительных машин. Там же, стр. 61-66.
17. Хоревский В.Г. Об алгоритмах распределения задач по ЭВМ в системе ЗМП, ведущей "массово-поточную работу". В кн.: Вычислительные системы. Новосибирск, 1969, стр. 29-34.
18. Хоревский В.Г. Об алгоритмах функционирования однородных универсальных вычислительных систем. В кн.: Вычислительные системы. Новосибирск, 1970, стр. 3-14.
19. Голоскобова Т.М., Хоревский В.Г. Алгоритмы функционирования однородных вычислительных систем и системы в простейших ситуациях. Там же, стр. 15-29.

Поступили в ред.-изд. отд.
23 октября 1973 года