Электростатические элементы, в которых для перемещения подвижных частей используются электростатические силы, известны по патентной литературе с начала века (пат. США №1848888, №1964062 "Световые клапаны", пат. СССР №42215, №5686, №5316 и пат. США №2927255, №2942007 "Электростатические реле"). Первые электростатические элементы не нашли широкого применения в технике прежде всего из-за трудностей использования для их управления высоких напряжений. С начала шестидесятых годов стали известны разработки электростатических элементов (транзисторы с резонирующим затвором, мембранные световые модуляторы, плоские электростатические реле, в которых для подвижных частей начали применять металлические или полимерные металлизированные пленки. Обзор этих работ приведен в [1,2]. Использование плоских материалов для подвижных частей позволило значительно уменьшить рабочие напряжения. С другой стороны, пленочное выполнение конструкторских и технологических разработки показало, что плоские элементы электростатические элементы по ряду своих свойств хорошо подходят для решения определённых задач в областях оптоэлектроники и микроэлектроники. Здесь обратим на себя внимание уникальные свойства этих элементов по модуляции света, цвета, проводимости. Благодаря механическому принципу работы, глубина модуляции определяется перемещением деталей элементов и приходит к физически пределным величинам. В то же время электростатические элементы имеют малые габариты и потребляемую мощность. Вместе с тем проявлялись трудности получения достаточно
стабильных и повторяемых характеристик этих элементов. В этой связи становится актуальной задача достижения стабильности, необходимой для применения ресометрирующих элементов.

В настоящей работе на основе определенных моделей представлений проводится анализ характеристик пленочных электростатических элементов, в которых влияние на стабильность параметров показывает, что полученные выражения для характеристик позволяют создать методику измерения и исследования стабильных параметров исследователей, приводится результаты исследований ряда изоляторов для электростатических элементов.

Прежде всего рассмотрим типовые конструкции пленочных электростатических элементов. Для равномерных применений в настоящее время используются консольные или ленточные (рис. 1), скользящие или мембраны (рис. 2), поворотные (рис. 3) элементы. Таким образом, для перемещения подвижных пленочных пластинок используются как тянутые пластинки, так и вращающиеся пластинки (при двухстороннем закреплении пленки практически всегда растягивается как одна из пленок), крушение. На рис. 1 и 2 видно, что первые два конструкции представляют собой конденсаторы с неоднородными по толщине к критерию изолятора, в качестве которых служат диэлектрические и полупроводниковые пленки и газовые промежутки между этими пленками и подвижными плямками. Для третьей конструкции характерен однородный по составу изолятор - газ.

Ниже приведены известные уравнения статического равновесия подвижных пластин и соответствующие граничные условия для трех рассматриваемых конструкций.

Изгибу в консольных конструкциях описывается уравнением [3]:

\[M = \rho \left(R_e - \frac{R}{R} \right), \]

где \(R \) - радиус кривизны консоль в рассматриваемом сечении; \(R_e \) - начальный радиус кривизны; \(M \) - момент электростатических сил;
\[\rho = \frac{E h^3 v}{12} \text{; } E \text{ - модуль Эйлера; } h \text{ - ширина и толщина консоли.} \]

При больших радиусах кривизны \(R \) в постоянном начальном радиусе \(R_e \) уравнение (I) может быть представлено следующим образом:

\[\rho = -B \frac{d^2 y}{dx^2}, \] (I)
где x и y — координаты консоли, ρ — электростатическое давление на поверхности консоли, $B = \frac{E h^3}{12}$. Грацичные условия для рассматриваемой задачи имеют вид:

$$
\begin{align*}
\frac{dy}{dx} & \bigg|_{x=0} = 0, \\
\frac{dy}{dx} & \bigg|_{x=\ell} = 0, \\
\frac{d^2 y}{dx^2} & \bigg|_{x=0} = 0, \\
\frac{d^2 y}{dx^2} & \bigg|_{x=\ell} = 0.
\end{align*}
$$

При изгибе в балочных конструкциях описывается уравнением [4]:

$$
\frac{d^4 w}{dx^4} = \frac{1}{D} \left(\rho + N \frac{d^2 w}{dx^2} \right),
$$

где $w = d - y$ — прогиб; d — исходный зазор между пластиной и изолятором; $D = \frac{E h^3}{12(1-\mu^2)}$ — цилиндрическая жесткость, μ — коэффициент Пуассона; $N = \sigma h$; σ — напряжение натяжения пластины, причем

$$
\sigma = \sigma_0 + \frac{E}{2L(1-\mu^2)} \int_0^L \left(\frac{dw}{dx} \right)^2 dx,
$$

где σ_0 — начальное напряжение натяжения пластины, а второй член учитывает дополнительный натяг пластины при прогибе. Грацичные условия для рассматриваемой задачи следующие:

$$
\begin{align*}
\frac{d^2 y}{dx^2} & \bigg|_{x=0} = 0, \\
\frac{d^2 y}{dx^2} & \bigg|_{x=\ell} = 0, \\
\frac{d^3 y}{dx^3} & \bigg|_{x=0} = 0, \\
\frac{d^3 y}{dx^3} & \bigg|_{x=\ell} = 0.
\end{align*}
$$

При участии $x = \frac{\sqrt{N}}{\mu} l$ в уравнения прогиба можно учитывать только натяжение пластины

$$
N \frac{d^2 w}{dx^2} = - \rho,
$$

и в этом случае нужно взять граничные условия $y|_{x=0} = 0$, $y|_{x=\ell} = 0$.

Кручение натянутой пластины описывается уравнением:

$$
J \frac{d^2 \varphi}{dx^2} = - m, \quad \varphi(0) = \varphi(L) = 0
$$

где φ — угол поворота пластины; m — распределенный момент;

$$
J \frac{d^2 \varphi}{dx^2} = G^* = G + \frac{E_s d^2}{4h^2}, \quad G = \text{модуль сдвига}.
$$

Уравнение (3) получено из (2) путем подставки $W = \varphi Z$, где Z — координата вдоль ширины пластины, и интегрированием по Z левой и правой частей (2), предварительно умноженных на Z.

К левой части добавлен обычный момент сопротивления из гида $G \frac{d^2 \varphi}{dx^2}$.

Электростатическое давление ρ, а следовательно, и момент M, m, определяются через электрические поля E_1 и E_2 на внутренней и внешней поверхностях поджимных пластины

$$
\rho = \frac{E_2 (E_1^2 - E_2^2)}{2}
$$

Давление направлено перпендикулярно поверхности пластины.

С целью получения выражений для полей E_1, E_2 рекомендуется феноменологически моделировать изоляторы в конструкциях рис. 1, 2.

Предполагается, что в твердом изоляторе плотность тока линейно зависит от поля. Его объемные свойства характеризуются:

S — оператором напряжения диэлектрической постоянной; $S = \frac{\partial E}{\partial x}$ — оператором дифференцирования по времени; ρ_0 — удельным объемным сопротивлением; P_0 — интерполяцией (сумой остаточных и интегрированных зарядов [5,6]). Свойства свободной поверхности изолятора характеризуют ρ_s — удельное поверхностное сопротивление [7]. В первом приближении краевыми эффектами можно пренебречь ($E_2 = 0$).

Потенциал φ на свободной поверхности изолятора при $E_2 = 0$ приближенно определяется из уравнения баланса токов в элементе dA изоляторов (потенциал нижних пластин принят равным нулю):

$$
\sigma_0 \frac{d^2 \varphi}{dx^2} - \left[E_s E(s) \right] \frac{\partial E}{\partial x} = E_s \frac{1}{2} (\mu - \varphi) = \varphi,
$$

* Указаны в виде металлические пластины.
где $\sigma_s = \rho_s^* \ , \ \sigma = \rho^* \ ; \ \Delta - толщина твердого изолятора; \ \gamma - плотность тока проводимости в зазоре, причем $\rho = \gamma$ при $x = 0$ в случае, изображенном на рис.1, и при $x = \Delta$, в случае, изображенном на рис.2.

Составляющая поля в зазоре от напряжения U равна

$$E_u = \frac{U - \varphi}{y} \ . \ (6)$$

Составляющая поля в зазоре от поляризации \mathcal{P} при $U = 0$ в принятом приближении, согласно известным представлениям [5,6], выражается так:

$$E_p = \frac{U_0}{y + \frac{\Delta}{\varepsilon_p}} \ ; \ \ U_0 = \mathcal{P}_0 \ \frac{\Delta}{\varepsilon_p \varepsilon_\infty} \ , \ (7)$$

где ε_p - низкочастотное значение диэлектрической постоянной.

ν, наконец, суммарное поле в зазоре:

$$E = E_u + E_p \ . \ \ (8)$$

Известно [v], что плотность тока J в зазоре является функцией величин поля E и величин зазора y и достигает заметных значений только при больших значениях поля $E > E_k = 10^7$ В/м.

Причем J резко возрастает при некотором пределе поля обозначенном E_k, т.е., вступает в действие определенный механизм прерывания поля. Эти особенности позволяют в первом приближении рассмотреть следующую модель. Поле E определяется из уравнений (5) и (6) с учётом (7) и (8) при $\gamma = 0$. Уравнение $E = E_k$ определяет значение y_k, так что при $y < y_k$ $E = E_k$. При этом следует иметь в виду, что при $y < y_k$ поле E_k представляет ре- зультат некоторого усреднения поля в зазоре и может быть отождествлено с полем на поверхности подвижной пластинки лишь весьма приближенно. Неоднородность этого поля ($\chi \neq 0$) прежде всего связана с возникновением в зазоре объёмных зарядов [9].

Величина зазора y в (5) является функцией времени, что позволяет задачу определения поля в зазоре. В то же время для электростатических элементов можно выбирать изоляторы, в которых, при включении напряжения, поле устанавливается в течение, значительно меньшее, чем время механического перевивления. В этих случаях в (5) можно считать величину y постоянной. Кроме того, во многих случаях можно положить $\sigma_s = 0^/$. При этих условиях из (5) и (6) следует, что

$$E_u = \frac{[\varepsilon_\infty \varepsilon (S) + \sigma]}{y \varepsilon_\infty \varepsilon (S) + \sigma + \frac{\Delta}{y} \varepsilon_\infty} \ U(S) \ , \ (9)$$

где S - оператор Лапласа.

Рассмотрим вычисление поля в простейшем случае, когда $\varepsilon(S) = \varepsilon_\infty = \varepsilon_p = const$, а напряжение меняется скачкообразно: $U_0, t < 0, U = const, t \geq 0$. Тогда, согласно (7), (8) и (9),

$$E = \frac{U_0}{y + \frac{\Delta}{\varepsilon}} + \frac{U}{y} - \frac{U}{y + \frac{\Delta}{\varepsilon}} \left(1 - \frac{y}{y + \frac{\Delta}{\varepsilon}}\right) e^{-\frac{y}{\varepsilon}} \ , \ (10)$$

где постоянная времени

$$\tau = \frac{\varepsilon_\infty}{\sigma_p} \left(\varepsilon y + \Delta\right) \ . \ (11)$$

характеризует изменение поля в зазоре. В зависимости от величины зазора τ изменяется от максимального значения

$$\tau_{max} = \frac{\varepsilon_\infty}{\sigma_p} \left(\varepsilon y_k + \Delta\right), \ \ y_k = \frac{U}{E_k} \ ,$$

до минимального возможного значения $\tau_{min} = \frac{\varepsilon_\infty}{\sigma_p} \ *$.

Напряженность поля устанавливается в зазоре быстро вре- мени переключения Δt элемента в двух случаях. В первом случае при $\Delta t > \tau_{max}$ устанавливается значение поля в зазоре (изолятор - полупроводник)

$$E = \frac{U_0}{y + \frac{\Delta}{\varepsilon}} + \frac{U}{y}, \ \ y > y_k \ ;$$

$$E = E_k, \ \ y < y_k \ . \ \ (12)$$

* При $\sigma_s = 0$ уравнение (5) не точно описывает распределение потенциала в местах закрепления подвиженных пластинок на расстояниях $\Delta x \approx \Delta$. При использовании толстых твердых изолято- ров необходимы уточнения, которые проведены в [10].
Тогда
\[E = \frac{\sigma \Delta U_m}{y + \frac{\sigma}{\varepsilon}} + \frac{U_m}{(y + \frac{\sigma}{\varepsilon} \ln \omega t)} \]
(16)
В (16) значение первого члена не превышает величины \(\frac{\sigma U_m}{\Delta} \).
Этот член весьма мал и его можно пренебречь. (Действительно, например, при \(\sigma = 10^{12} \, \text{ом}^{-1} \cdot \text{м}^{-1} \) \(f = 10^3 \, \text{Гц} \), \(\frac{\sigma}{\varepsilon} \approx 2 \times 10^5 \).
Суммарное среднеквадратическое поле в зазорах \(E \) вычисляется теперь с учетом синусоидальности \(E_\omega \). С учетом (15):
\[E = \sqrt{\frac{U_0}{(y + \frac{\sigma}{\varepsilon})^2} + \frac{U_0^2}{(y + \frac{\sigma}{\varepsilon})}} \]
(17)
Если имеют место условия, входящие в (15') и (16), то:
\[E = \sqrt{\frac{U_0^2}{(y + \frac{\sigma}{\varepsilon})}} \]
(18)
В (17) и (18) \(U = \frac{U_m}{\sqrt{2}} \) — действующее значение переменного напряжения.
Рассмотренные примеры показывают, что в зазорах элементов (рис.1,2) можно получить повторяющуюся картину поля при описании и тех же напряжениях и зазорах в случаях: изолятор — полупроводник, напряжение управления знакопеременное; изолятор — высокочастотный диэлектрик, напряжение управления знакопеременное. Полученные результаты и условия качественно не изменяются при учете дисперсии диэлектрической постоянной \(\varepsilon = \varepsilon(\omega) \). При изменениях в указанных выше условиях уже нельзя гарантировать повторяемость картин поля.
Рассмотрим теперь 1-е ближайшее выражение для поля на поверхности изоляируемой металлической пластинки (рис.3), вносимой в однородное внешнее поле \(E_\infty \). Выражение для этого поля получим из рассмотрения следующей задачи: конечный тонкий проводящий слой \(\frac{b}{2} < z < \frac{b}{2} \) располагается в области действия поля \(E_\infty \), направленного под углом \(\Theta \) к оси \(z \) в плоскости сечения пластины. Нормальные составляющие поля на поверхности такой пластины вычисляются [11]:

\[E_x = \left(\frac{\sigma}{\varepsilon_0} \right) \sin \omega t \]
(19)
для \(\omega \ll \frac{\sigma}{\varepsilon_0} \).

\[E_x = \left(\frac{\sigma}{\varepsilon_0} \right) \sin \omega t \]
(19')
для \(\omega \gg \frac{\sigma}{\varepsilon_0} \).
\[E^+ = \left(\sin \theta \frac{1}{\sqrt{1 - \frac{z}{z^*}}} \cos \theta \right) E_{\infty}, \quad (19) \]

где \(E^+ \) и \(E^- \) — значения полей на разных плоскостях пластины.

Статические характеристики электростатических элементов рассчитываются путем решения задач, которые дадут уравнениям равновесия (1)–(3) с соответствующими граничными условиями, где выражения для электростатического давления \(\rho \) вычисляются согласно (4) с помощью уравнений для электростатических полей (5)–(9), (19), например, в форме уравнений (12), (13), (17), (18).

Следующие характеристики представляются в виде зависимости: напряжения в характерных точках подложки пластин от величины напряжений между подложниками с неподвижными электродами; величина зазора в точке \(z^* = \Delta \) — от напряжения для лепесткового элемента; величина прогиба в центре пластины — от напряжения для лепесткового элемента; угол поворота — от напряжения для поворотного элемента. Как правило, эти зависимости имеют тангенс тип зависимостей:

- при нарастании напряжения растет до некоторого напряжения, которое обычно называется напряжением срабатывания \(U_{\text{рпд}} \), а затем при достижении этого напряжения пластина резко перемещается и приходят в соответствие с течением изолятора в конструкции рис.1 и рис.2. При обратном уменьшении напряжения пластина остается почти неподвижной до достижения напряжением значения \(U_{\text{омн}} \) — напряжения отпирания. Коэффициент возврата \(\kappa = \frac{U_{\text{омн}}}{U_{\text{рпд}}} \) имеет значение меньше единицы. При тангенс тип зависимости статические характеристики можем представить только значениями напряжений \(U_{\text{рпд}} \) и \(U_{\text{омн}} \).

При принятых выше допущениях (длина зазора \(\gamma \)) для лепестковых элементов может быть рассчитано напряжение отпирания. В работе [11] проведен расчет \(U_{\text{омн}} \) для случая, когда изолятор имеет параметры \(\varepsilon = \varepsilon_0 = \text{const} \), \(\sigma = 0 \), \(\sigma_s = 0 \). Согласно этому расчету в выражениях (13) и (18), напряжение отпирания при знакопостоянном напряжении приложено равно:

\[U_{\text{омн}} = 0,248 \frac{E_{\infty}^+ \Delta^3}{\varepsilon_{\infty}^+ \varepsilon_{\infty}^+ R_s} - U_0, \quad (20) \]

и при знакопеременном напряжении достаточно высокой частоты:

\[U_{\text{омн}} = \sqrt{0,082 \frac{E_{\infty}^+ \Delta^3}{\varepsilon_{\infty}^+ \varepsilon_{\infty}^+ R_s}} - U_0. \quad (21) \]

В работе [11] произведен аналогичный расчет напряжения отпирания для случая, когда изолятор имеет параметры \(\varepsilon = \text{const} \), \(\sigma = 0 \), \(R_s = 0 \); при \(E = E_{\infty} \), если \(U < U_{\text{омн}} \). Согласно этому расчету:

\[U_{\text{омн}} = 0,04 \frac{E_{\infty}^+ \Delta^3}{\varepsilon_{\infty}^+ E_{\infty}^+ R_s}, \quad (22) \]

где \(E \) — модуль Юнга, \(E_{\infty} \) — максимальное значение электрического поля.

Расчеты значений \(U_{\text{рпд}} \) и \(U_{\text{омн}} \) для балочную конструкцию применяются в основном к многоплановым электростатическим решеткам. Расчетный случай, когда параметры изолятора следующие: \(\varepsilon = \varepsilon_0 = \text{const} \), \(\sigma = 0 \), \(\sigma_s = 0 \), \(R_s = \text{const} \). Для знакопостоянного напряжения:

\[U_{\text{рпд}} = 1,68 \frac{\varepsilon_{\infty}^+ (\Delta^* + \Delta)^3}{\varepsilon_{\infty}^+ E_{\infty}^+ R_s} - U_0. \quad (23) \]

Для знакопеременого напряжения:

\[U_{\text{рпд}} = \sqrt{2,82 \frac{\sigma (\Delta^* + \Delta)^3}{\varepsilon_{\infty}^+ E_{\infty}^+ R_s} - U_0}. \quad (24) \]

Коэффициент возврата при указанных выше условиях, согласно расчетам в работах [12–15], является функцией отношения \(\frac{\Delta}{\Delta^* + \Delta} \).

Имеет:

\[U_{\text{омн}} = U_0 \kappa \left(\frac{\Delta}{\Delta^* + \Delta} \right) - U_0 \quad (25) \]

при знакопостоянном напряжении;

\[U_{\text{омн}} = \sqrt{U_0^2 \kappa^2 \left(\frac{\Delta}{\Delta^* + \Delta} \right)^2} - U_0 \quad (26) \]

при знакопеременном напряжении;

где \(U_0 = 1,68 \frac{\varepsilon_{\infty}^+ (\Delta^* + \Delta)^3}{\varepsilon_{\infty}^+ E_{\infty}^+ R_s} \).
В работе [10] рассчитано напряжение срабатывания при \(\sigma = \sigma_{cr} + \sigma_{0} \), с учетом изменивших потенциала на поверхности полупроводника от продольных составляющих тока проводимости. Показано, что при \(\frac{h}{L} > 5 \), \(\sigma_{0} = 0 \) выражение для \(\mathcal{U}_{0}\sigma_{0} \) также же, как и при \(\epsilon = \epsilon_{0} + \epsilon_{0} \), если заменить величину \(\frac{h_{0}}{b_{0}} \) на \(\frac{h}{L} \). С учетом \(\sigma_{0} \neq 0 \) при знакопостоянном напряжении в этом случае:

\[
\mathcal{U}_{0}\sigma_{0} = \frac{1}{2} \epsilon_{0} b_{0}^{\frac{1}{2}} \frac{h_{0}^{\frac{1}{2}}}{L} \frac{\sigma_{0}}{\epsilon_{0}^{\frac{1}{2}}} - \mathcal{U}_{0}.
\]

(27)

Наконец, рассмотрим оценку значения поля \(E_{\infty} \), необходимого для получения относительно больших углов поворота изгибающей - мой пластины в толстой конструкции рис. 3 [11].

Распределенный момент вращения пластины под действием поля, согласно (19), равен:

\[
m = \int \rho z \, dz = \frac{\sigma_{0}}{2} \int \left((E_{z})^{2} - (E_{r})^{2} \right) z \, dz = \frac{\pi}{8} \epsilon_{0} E_{\infty} b^{\frac{1}{2}} \sin 2\theta.
\]

(28)

Полагая \(\theta = \phi_{0} - \phi \), где \(\phi_{0} \) — начальный угол поворота пластины относительно направления поля \(E_{\infty} \), и подставляя (28) в (3), получим уравнение изгиба пластины в поле:

\[
J_{0} G \frac{d^{2} \phi_{0}}{d x^{2}} = - \frac{\pi}{8} \epsilon_{0} E_{\infty} b^{\frac{1}{2}} \sin 2(\phi_{0} - \phi),
\]

(29)

\[\phi_{0} = 0 \text{ при } x = O, L, \]

решение которого выражается в эллиптических функциях. При \(\phi_{0} = \frac{\pi}{2} \) пластина находится в положении неустойчивого равновесия. Состояниями значения (29) определяют поле, при котором пластина теряет устойчивость

\[
E_{\infty} = r \frac{2 \pi^{2} \frac{h^{2}}{L} (G_{0})^{\frac{1}{2}}}{\epsilon_{0}^{\frac{1}{2}} L b^{\frac{1}{2}}}, \quad r = 1, 2, \ldots
\]

(30)

Расчеты динамических характеристик рассмотриваемых элементов представляют из себя сложные задачи. В то же время оценка предельных частот их срабатывания при принятых условиях, выполнение на параметры изолятора, не предполагает больших затруднений. Эти частоты ограничивается переменными собственными частотами подвижных пластин [16]. Для конструкции рис. 1:

\[
f = \frac{0,162}{2 \pi} \frac{h}{L} \frac{E_{\infty}^{\frac{1}{2}}}{\rho_{0}^{\frac{1}{2}}};
\]

(31)

для конструкции рис. 2:

\[
f = \frac{1}{2 \pi} \frac{\sigma_{0}^{\frac{1}{2}}}{\rho_{0}^{\frac{1}{2}}};
\]

(32)

для конструкции рис. 3:

\[
f = \frac{1}{2 \pi} \frac{G_{0} h_{0}^{2}}{b_{0}^{\frac{1}{2}} + \sigma_{0}}^{\frac{1}{2}}.
\]

(33)

В (31)-(33) \(\rho \) — удельная плотность материала подвижных пластин.

Для консольной конструкции экспериментально определены зависимости времени включения (разключения) от величины импульса прикладываемого напряжения, которые хорошо аппроксимируются выражением:

\[
\frac{1}{\Delta t} = S_{\omega} (\mathcal{U}_{0} - \mathcal{U}_{a}),
\]

(34)

где \(\mathcal{U}_{a} \) — напряжение, близкое по величине к значению напряжения срабатывания. Для следующих размеров лепестков: \(h = 1-2 \, \text{мм} \), \(L = 3-6 \, \text{мм} \), \(R_{0} = 1,5-3 \, \text{мм} \), \(\rho_{0} = 10 \, \text{в} \cdot \text{сек}^{-1} \).

Проведем теперь анализ приведенных выражений для характерных напряжений и частот электростатических элементов с точки зрения стабильности соответствующих характеристик. Здесь следует отметить, что результаты этого анализа имеют отношение не только к элементам, в которых используются ключевые свойства, но и к элементам, в которых используются квазинейные участки статических характеристик. Можно выделить три группы параметров, от которых зависят аналогоевые характеристики — механические параметры: \(\mathcal{E}, \mathcal{G}, \sigma_{0} \); размеры: \(L, h, \lambda, \alpha, \rho, \) электрические параметры: \(\rho_{0}, \mathcal{U}_{0}, \epsilon, \sigma, \sigma_{0}, \epsilon_{0} \). От стабильности и разброса этих параметров, согласно приведенным выражениям, зависит стабильность и разброс характеристик рассматриваемых элементов.
Стабильность механических параметров зависит от типа применяемых материалов для подвижных пленочных элементов и от величины максимальных значений механических напряжений в них. В своей работе [17] показано, что собственные, необходимые для электростатических элементов свойства, например, конечности обернутой сбруши, тем же установлены и предельные допустимые механические напряжения. На удовлетворительные механические свойства пленок в мембранных модулях света указывают непосредственные разработчики этих элементов (Престон [18], Конвентио и Стэг [19], Вон Рейлс [20]) отметили резервирование подвижных пленочных элементов в мембранных микродатчиках для промежуточного телевидения. Однако они же проводят и максимальные значения механических напряжений, которые ведо приводят к пределу усталости, для соответствующих материалов. Механические свойства пленок являются основной причиной нестабильности рассмотриваемых элементов и показывают необходимость повышения напряжений. В этом, что, во-первых, уже небольшие значения U ~ 10 в меньшем, чем 10, всегда стоят на наименьшем с величинами напряжений отпушения при $P_o = 0$ и могут превышать их. Из данных по ионам, например, известно [22], что изоляция не является стабильной, а изоляторы, в которых напряжение отпушения для $P_o = 0$ должно быть большим и порядка U_o, заставляет увеличивать толщину подвижных пленок, что увеличивает и напряжение отпушения (в настенных элементах -- так -- до сотен вольт).

Таким образом, возникает необходимость в разработке методик и приборов для изучения проволочных проводимости в различных условиях, включая условий работы электростатических элементов.

Для построения деталей соответствующих приборов хорошо подходят сами электростатические элементы лепесткового или мембранного типа. Аппаратура не сложна, чтобы оценить напряжения $U_{\text{пов}}$ или $U_{\text{исп}}$. Предположим, что к электродам элемента лепесткового типа приложено напряжение U_i симметричных положительных и отрицательных полуволн, которое имеет форму $f(t)$, позволяя изменять напряжение отпушения при величинах полярностей. Пусть при этом собирается условие анализа волновых харakterистик (6), то есть предполагается, что напряжение на каждый электрод элемента от токов проводимости пренебрежимо мало. Тогда, согласно (20), для положительной полуволны:

$$U_{\text{пов}} = U_i - U_o,$$

для отрицательной полуволны:

$$U_{\text{исп}} = U_i + U_o,$$

где

$$U_i = \frac{E_{\text{пов}} h^3}{E_{\text{исп}} h^3} \left(\frac{L}{L} \right)^2 - 0,236 \text{ и } (20)).$$
Складывая и вычитая (35) и (36), получим:

\[U_0 = \frac{U_{cm} - U_{mn}}{2} \] \hspace{1cm} (37)

\[C = \frac{U_{cm} + U_{mn}}{2} \] \hspace{1cm} (38)

Из выражения для \(C \) следует, что величина

\[\frac{E_{cm}^2}{E_0^2} \cdot \frac{-A^2}{2} = \frac{U_{cm} - U_{mn}}{2} \left(\frac{E_{cm}^2}{E_0^2} \right) = F = \text{const} \] \hspace{1cm} (39)

так как в левую часть (39) входят только модуль \(E_0 \) и размеры лепестка. Следует иметь в виду, что вывод уравнений (35) и (36) сделан при условии постоянства диэлектрической постоянной от ультразвуковых частот до частот прикладываемого напряжения.

На рис. 4 приведены значения величин \(F \) для разных материалов диэлектриков и разных их толщин (о - фторопласт 4; о - полиэтилен; к - лавсан). В качестве материала использовался фторопласт-4, полиэтилен и лавсан. Для этих материалов, как видно из рис. 4, постоянство величины \(F \) выполняется с точностью \(\pm 20\% \). Точность определения \(U_0 \), согласно (37), непосредственно зависит от точности определения величины \(F \).

Рис. 4

Применение описанной методики и её разновидностей позволило провести сравнительный анализ различных материалов изоляторов с точки зрения их использования в конструкциях электростатических элементов. Выделены перспективные и неперспективные материалы. Из исследованных к перспективным материалах можно отнести нейтральные диэлектрики: фторопласт-4, полиэтилен. Среди полупроводников перспективным представляется компенсированный арсенид галлия \(p_d = 10^9 \) омсм (при защите поверхности от окисления). Заведомо отрицательные результаты получены при изучении кремниевых и кадмиевых стёкол, амфорных полупроводников \((\beta_d = 10^8 - 10^9 \text{ омсм}) \) халькогенидных и халькогенидных стёкол (как на основе сурымы, так и мышьяка). При использовании последних материалов отмечается сбой, который нельзя объяснить влиянием только поляризации. На свободной поверхности исследованных амфорных полупроводников после удаления лепестков видны следы металла подвижного лепестка. Относительно большой группы исследованных материалов изоляторов пока нет полной ясности. К ним относятся тонкие пленки \(SiO_2 \), \(SiC \) (вирокристаллическое и термическое) \(Al_2O_3 \), \(BN \); сапфир, поликристаллические стёкла; лавсан и т.д.

В заключение можно утверждать, что наиболее достойным полупроводниковым материалом для электрических элементов является резистивный изолятор. В настоящее время созданы новые материалы, позволяющие проводить более целенаправленный подбор изоляторов для электрических элементов с целью повышения их стабильности. Отсюда видно, что в условиях поляризации полупроводников возможно уменьшить напряжение управления этих элементов.

Литература

1. Дьяков В.Л., Рогалев А.И., Электромеханические явления в электротехнике, вып. 49, Новосибирск, 1972, с. 132-145.
3. Попов Б.П., Надёжные задачи статики тонких стержней, М., Л.: ОГИЗ, 1948, с. 31-40.
4. Усманов С.П., БОЙКОВСКИЙ-КРЮТВЕР. Пластика и оболочки, М., ГУМКИ, 1963.
7. Мантров М.И., Электрические разряды в диэлектрических стеклах, "Электротехника", 1940, № 5, с. 54-56.
9. ЕНИСЕЙСК И.И., СТЕПАНОВ Г.Б., ПЕРОВ П.И., ДОЛЯКИН В.И.
Основные механизмы переноса носителей заряда в пленочных систе-
мах. Вопросы пленочной электроники. Сб. статей. М., Изд."Сов.
радио", 1965, с.5-83.
10. ЛУКЮНОВА Р.Г., ФАДЕЕВ С.Б. О численном решении крае-
вых задач, связанных с электростатическим притяжением мембран.
— Настоящий сборник, с.61-90.
11. КИРШЕР А.С., ЛУКЮНОВА Р.Г., ФАДЕЕВ С.Б., ИВАНОВ К.В.
К расчету равновесия упругих конструкций, используемых в пле-
ночной электронике. — Настоящий сборник, с.91-130.
12. БУТУНОВ Б.А., СОЛОДОВ И.В. Некоторые результаты ис-
следования пленочных электростатических реле. — В кн.: Вычислитель-
ные системы. Труды Всесоюзной конференции по вычислитель-
ным системам. Вып. 5, Новосибирск, 1967, с.185-176.
13. ПОЛИНА Т.В., ПОЛУПАТОВ Б.С. Статические характеристики
пленочных электростатических реле с выступающим контактом. — В
14. ЛУКЮНОВА Р.Г., ФАДЕЕВ С.Б., ИВАНОВ К.В. Расчет стати-
ческих параметров механической модели пленочного электростати-
ческого реле. — В кн.: Вычислительные системы. Вып.46, Новоси-
бирск, 1970, с.3-50.
15. ФАДЕЕВ С.Б. Численный метод решения одного интеграль-
ного уравнения типа Гаммельтейна в связи с расчетом характери-
стики пленочного электростатического реле. — В кн.: Вычисли-
тельные системы. Вып.50, Новосибирск, 1972, с.3-50.
17. ЭДЛИНГ Г.К. Прочностные свойства пленок и пленочная
электроника. — Настоящий сборник, с.21-32.
18. ПРЕСТОН. Мембранная световая модуляция и его примене-
ние в оптических ПЗС. — "Зарубежная радио-электроника", 1970, №10,
с.112-116.
19. COSENTINO L.S., STEWART W.C. A Membrane Page Composer.
20. ВАР РАДКИТ. Новая светоокрашенная система для проекции
на больной экран. — "Зарубежная радиоэлектроника", 1971, №12,
с.90-97.
21. ФИЛАТОВ Г.А., БАБЕВ Ф.А., ЦИМБАЛП В.С. Малогабаритные
22. ГУСИНИН А.И. О физической природе и перспективах изу-
чения электретного состояния органических и неорганических ди-
электриков. Полимеризация, электретный эффект, старение и проба
dиэлектриков. — Материалы Всесоюзной конференции "Физика диэлек-
триков и перспективы её развития". Том II, 1973, с.117-118. (Ле-
нингр. полит. ин-т им. М.И. Калинина).

Поступили в ред.-изд. отд.
I декабря 1975 года