5. Выполненное исследование базируется на развитом алгебро-грамматическом аппарате, включающем логические средства и метапрограммы выводимости схем алгоритмов и программ, принадлежащих классам, ассоциированным с актуальными предметными областями. Особенность алгебро-грамматических средств представляет знание — гармоническое сочетание декларативных процедурных и трансформационных спецификаций, а также адекватность данных средств концепции объектно-ориентированного программирования.

На основе полученных результатов разработаны наукоемкая технология и ее инструментарий КЭС-система МУЛЬТИПРОЦЕССИСТ, на- лежшие применение при решении задач АСУ, САПР конструкторской и технологической подготовки производства, языковых процессов — ров транслирующего и интерпретирующего типа.

Литература

FINITARY LAMBDA CLONES

Diskin Z.B., Riga

There are known several algebraic structures aspiring to be an algebraic counterpart of the λ-calculus: λ-algebras, combinatorial models, λ-models (here and further we follow, on the whole, the terminology adopted in [1]). We present one more such a structure called a (finitary) λ-clone which has some attractive features from both, universal algebra and λ-calculus points of view. Namely, for any environment model of the λ-calculus, the range of the valuation mapping is a λ-clone, in fact, a so-called locally finite (l.f.) λ-clone. In addition, the very valuation mapping is nothing but a homomorphism onto this λ-clone and the corresponding λ-theory (of the model) is the kernel of this homomorphism. Equivalently, if (C, ', k, s) is a λ-algebra and X is a countable set of variables, then the polynomial algebra C[X] can be equipped with the structure of a λ-clone and proves the l.f. λ-clone generated by C (not X!) with certain defining relations.
At the same time, the class of all \(\lambda \)-clones is a variety of algebras contained in the class of \(\lambda \)-models and, besides, the last one, considered as a category, is equivalent to the full subcategory of \(\lambda \)-clones consisting of \(l.f. \) \(\lambda \)-clones.

These nice properties of \(\lambda \)-clones are provided by the point that variables, \(\lambda \)-quantifiers and substitutions are included directly into the signature of \(\lambda \)-clones. Roughly speaking, a \(\lambda \)-clone is an abstract clone in the sense of universal algebra equipped with operations of application and \(\lambda \)-quantifications.

DEFINITION 1 [2]. Let \(L = (x_i, s_i, ', \lambda_i)_{i<\omega} \) be a signature of operation symbols where all \(x_i \) are constants, all \(s_i \) and ' are binary and all \(\lambda_i \) are unary. A (finitary) \(\lambda \)-clone is defined to be an \(L \)-algebra \(W \) s.t. the following identities hold for each \(i, j, k < \omega \) with \(i \neq j \neq k \) (\(u, w \) range over the underlying set \(W \), \(v \) stands for \(s_j(x_k, w) \)):

\[
\begin{align*}
(S) & \quad s_i(x_i, w) = w, \quad s_i(w, x_i) = w, \quad s_j(w, x_i) = x_i, \quad s_i(u, v) = v, \\
& \quad s_i(u, w_1, w_2) = s_i(u, w_1), s_i(u, w_2); \\
(SQ) & \quad s_i(w, \lambda_i u) = \lambda_i u, \quad s_i(v, \lambda_i u) = \lambda_i s_i(v, u); \\
(a) & \quad \lambda_i v = \lambda_i s_i(x_i, v); \quad (\beta) \quad (\lambda_i w), u = s_i(u, w).
\end{align*}
\]

Here \((S) \) - identities correspond to intuitive understanding of \(s_i(u, w) \) as the result of substituting of \(u \) into \(w \) for \(x_i \), \((S) \) - identities regulate interaction between substitutions and \(\lambda \)-quantification, \((a) \), \((\beta) \) provide \((a), (\beta) \) - conversion resp.

Given a \(\lambda \)-clone \(W \), for each element \(w \in W \) we introduce its dimension set, \(\Delta w := \{ i < \omega : s_i(u, w) \neq w \text{ for some } u \neq x_i \} \), and call \(w \) finitary if \(|\Delta w| < \omega \) and closed if \(\Delta w = \emptyset \). Further, we define \(W_{\text{fin}} := \{ w : |\Delta w| < \omega \} \) and \(W_\emptyset := \{ w : \Delta w = \emptyset \} \). \(W_{\text{fin}} \) proves a subalgebra of \(W \), \(W_\emptyset \), and \(W \) is called locally finite dimensional (l.f.) if \(\emptyset = W_{\text{fin}} \).

DEFINITION 2. An environment domain is defined to be a pentuple \(\mathfrak{g} = (D, V, F, \phi, \psi) \) with \(D \) a set, \(V \) a set of operations \(D^\omega \rightarrow D, F \) a set of operations \(D \rightarrow D, \phi \) a mapping \(D \rightarrow F \) and \(\psi \) a mapping \(F \rightarrow D \) s.t. the following conditions are fulfilled (we use the symbol \(\Lambda \) for the ordinary set theoretical (meta)}
lambda abstraction):

(E1) \(\pi_i := (\Lambda \rho \in D^\omega . \rho i) \in V \) for all \(i < \omega \), \(\bar{d} := (\Lambda \rho \in D^\omega . d) \in V \) for all \(d \in D \);

(E2) if \(u, v \in V \) then \((\Lambda \rho \in D^\omega . v([u/i]_\rho)) \in V \) and \((\Lambda \rho \in D^\omega . \Phi(u)(v_\rho)) \in V \);

(E3) if \(v \in V \) then, for any fixed \(i < \omega, \rho \in D^\omega \), \((\Lambda d \in D. v([i/d]_\rho)) \in F \).

An environment domain is said to be an environment model if

(E4) \(\Phi \mathcal{W} = \mathcal{F} \) for all \(f \in F \).

CONSTRUCTION.

(i) With any environment domain \(\mathcal{E} \) as above there is correlated the L-algebra \(\mathcal{V}_\mathcal{G} = (V, \pi_i, s_i, ', \lambda_i) \) with operations defined according to the items (E1, 2, 3) of the definition 2.

(ii) With any L-algebra \(\mathcal{W} \) there is correlated a domain pentuple \(\mathcal{S}_\mathcal{W} = (D, V, F, \phi, \psi) \) where \(D = W_\emptyset, V \) is the set of all operations on \(D \) determined by polynomials built from a countable set of variables and elements of \(D \) with the operation ', \(w = \lambda u \in W_\emptyset, w'u, F := \{ (w: w \in W_\emptyset) \}, \psi w := (\lambda, \lambda_j(x_i', x_j))'w \).

THEOREM 1. If \(\mathcal{E} \) is an environment model then \(\mathcal{V}_\mathcal{G} \) is a l.f. \(\lambda \)-clone; if \(\mathcal{W} \) is a \(\lambda \)-clone then \(\mathcal{S}_\mathcal{W} \) is an environment model; finally, \(\mathcal{S}_\mathcal{W} \mathcal{E} \cong \mathcal{E} \) and \(\mathcal{V}_\mathcal{W} \mathcal{G} \cong \mathcal{W} \mathcal{F} \).

THEOREM 2. A \(\lambda \)-theory is defined to be a couple \((C, T)\) with \(C \) a set of constants and \(T \) a subset of \(\Lambda(C) \times \Lambda(C) \) closed under the ordinary \(\lambda \)-calculus deducibility. If \(\mathcal{T} = (C, T) \) is a \(\lambda \)-theory then \(\mathcal{W}_\mathcal{T} = \Lambda(C)/T \) is a l.f. \(\lambda \)-clone; if \(\mathcal{W} \) is a \(\lambda \)-clone and \(\mu \) is the homomorphism \(\Lambda(W_\emptyset) \rightarrow \mathcal{W} \) naturally extending the identity inclusion \(W_\emptyset \hookrightarrow W \), then \(\mathcal{F}_\mathcal{W} = (W_\emptyset, \ker \mu) \) is a \(\lambda \)-theory; finally, \(\mathcal{F}_\mathcal{W} \mathcal{T} \cong \mathcal{T} \) and \(\mathcal{W}_\mathcal{F} \mathcal{W} \cong \mathcal{W}_\mathcal{F} \).

CONJECTURE. The variety generated by the class of all l.f. \(\lambda \)-clones coincides with the class of all \(\lambda \)-clones.

IN PROSPECT. The notion of a finitary \(\lambda \)-clone is somewhat unnatural as finitary operations acting on closed elements can not reach elements with infinite dimension sets. In this con-
text, a more natural structure is a λ-clone with infinitary,
$(1+\varpi)$-ry, applications and infinitary, $\overline{\varpi}$-ry, λ-quantifiers for
all, finite and countable, sequences $\overline{\varpi} \in \omega^\omega$. In this way we ob-
tain an algebraic version of an infinitary λ-calculus but this
is another story.

REFERENCES

1. MEYER A.R. What is a model of the lambda calculus?Inform-
formation and Control, 52,1, 1982(87-122).
Math. Submitted.

ON CODING OF HEREDITARILY-FINITE SETS, POLYNOMIAL-TIME COMPUTA-
BILITY AND Δ-EXPRESSIBILITY

Sazonov V.Yu., Leontjev A.V., Pereslavl-Zalessky

This paper is devoted to computability and definability
in terms of bounded (i.e.,Δ-) set theoretic language (cf. re-
ferences below).

A coding (or numbering; cf. the general theory in [3]) of
the universe of hereditarily-finite sets HF is any surjection
$\Theta: A^* \rightarrow HF$ from the set of all finite strings over some finite
alphabet A. Let P_Θ denote the class of operations $P:
HF \rightarrow HF$ such that $P \Theta = \Theta f$ for some polynomial-time computable
(or shortly, P-) function $f: A^* \rightarrow A^*$. For any two codings
$\Theta: A^* \rightarrow HF$, $\eta: B^* \rightarrow HF$ and P-function $f: A^* \rightarrow B^*$ the P-redu-
cibility $\overset{f}{\Theta} = \Theta f$ is denoted also as $\Theta P^f \eta$ or $\Theta \leq_P \eta$.
P-equivalence $\Theta P^f \eta$ means $\Theta \leq_P \eta$ & $\eta \leq_P \Theta$ and implies
$P \Theta = P$. If cardinalities of A and B are ≥ 2 then any
$\Theta: A^* \rightarrow HF$ is P-equivalent to some $\Theta B^* \rightarrow HF$ (via arbitrary
two-sided P-bijections $f:A^* \rightarrow B^*$). Hence, we will usually consi-
der codings over the same A. Any Θ is called P-coding if (1)
the predicate "HF $\models \Theta(a) \in \Theta(b)"$ is P-decidable on any, $a,b \in
\in A^*$ and (2) two P-computable mappings $a \rightarrow a_1, \ldots, a_k$ and $a_1,\ldots