EN Numeration of Unbranched Catacondensed Systems of Congruent Polygons

B.N.Cyvin, S.J.Cyvin, J.Brunvoll, A.A.Dobrynin

Introduction

In a classical work, Balaban and Harary [1] published the algebraic formulas for the isomer numbers of unbranched catafusenes, a class of chemical graphs. The systems in question represent certain polycyclic conjugated hydrocarbons with exclusively six-membered rings. They consist of congruent regular hexagons and are catacondensed in the sense that there is no vertex shared by three hexagons in such a system. The enumeration of unbranched catafusenes has been revisited or reviewed many times [2-10]. Corresponding systems with other polygons than hexagons are also of interest in chemistry, and especially those with pentagons or five-membered rings. Algebraic formulas for the isomer numbers of unbranched catapolypentagons, which consist of pentagons exclusively, are also known [10-13].

The \(P_r \) numbers of nonisomorphic unbranched catapolypentagons and \(H_r \) numbers of unbranched catafusenes are given by

\[
P_r = \frac{1}{4} \binom{2}{r} + 2^{r-4} + 2^{\lfloor r/2 \rfloor - 2}, \quad r > 1,
\]

and
respectively, as expressed in a most compact way. Here and throughout in the following, \(r \) is used to denote the number of polygons (or rings). In addition to the works cited above [2-12], Balaban [14] has given an equivalent expression to (1) for even-numbered \(r \). His formula emerged from an algorithmic treatment of a rather general class of systems, viz. unbranched catacondensed systems consisting of polygons with arbitrary sizes. However, he did not aim at the derivation of explicit formulas in more general cases. Another algorithm for the numbers of unbranched catapolypentagons is available [15].

In the present work, we have achieved the general formula for the numbers of nonisomorphic unbranched catapoly-\(q \)-gons, a class whose members consist exclusively of \(q \)-gons (or \(q \)-membered rings). Equations (1) and (2) are the special cases for \(q = 5 \) and \(q = 6 \), respectively.

1. The systems

An unbranched catapoly-\(q \)-gon is a simply connected system of \(r \) \(q \)-gons (where \(q \) is fixed) which (for \(r > 1 \)) possesses exactly two terminal \(q \)-gons attached to one neighbouring \(q \)-gon each, and all the other \(q \)-gons (for \(r > 2 \)) possess exactly two neighbours each. The systems are simply connected in the sense that they do not have any holes like coronoids [16,17].

When a catapoly-\(q \)-gon is drawn in a plane and only congruent regular \(q \)-gons are applied, it may happen that a part of the system overlaps itself. It should be emphasized that such "helicenic" systems are included among the classes considered here. Among polyhexes (which consist of hexagons exclusively), the helicenic systems are well known [8,9,18]. The helicenic

\[
H_r = \frac{1}{4}(1 + 3^{r-2} + [3-(-1)^r]3^{\lfloor r/2 \rfloor - 1}), \quad r > 1, \quad (2)
\]
catafusenes in particular, have been referred to as catalicenes, and among the unbranched catalicenes one finds the familiar normal helicenes (hexahelicene, heptahelicene, etc.), of which many of the chemical counterparts have been synthesized. These compounds, as well as others which represent helicenic systems, are known to be distorted from planarity in a "helical" fashion. Accordingly, the helicenic systems are also referred to as geometrically nonplanar, but they are planar in the graph-theoretical sense, i.e. they correspond to planar graphs.

As an alternative to the above descriptions, the unbranched catapoly-q-gons may be defined precisely in terms of the way they may be generated: For any q, there exists a unique catapoly-q-gon with $r = 1$ (the degenerate system of one q-gon alone) and likewise a unique system with $r = 2$. All unbranched catapoly-q-gons with a given $r > 2$ are generated by attaching a q-gon to one of the terminal q-gons in all the nonisomorphic systems of the considered category with $r-1$ q-gons in all possible ways (but one at a time). The added q-gon should be attached to a "free" edge of the pertinent terminal q-gon. Here a free edge is defined as an edge between two vertices which each possess the degree two.

2. Symmetry

The degenerate catapoly-q-gon ($r = 1$), when represented by a regular q-gon, belongs to the symmetry group D_{qh}. With regard to the nondegenerate systems ($r > 1$), all the unbranched catapoly-q-gons (for arbitrary q) are distributed among the four symmetry groups D_{2h}, C_{2h}, C_{2v} and C_s. These considerations are based on systems drawn in a plane using congruent regular q-gons. Accordingly, the geometrical nonplanarity is not taken
into account. Thus, for instance, all the normal helicenes are attributed to the symmetry \(C_{2v} \).

3. Derivation of formulas

In the present derivation of the numbers of nonisomorphic unbranched catapoly-\(q \)-gons, the symmetry is exploited. Let these total numbers of isomers be denoted by \(I_r \), which is a function of \(r \) and \(q \). We write

\[
I_r = D_r + C_r + M_r + A_r,
\]

where the symbols on the right-hand side designate the appropriate numbers for systems of symmetries \(D_{2h} \), \(C_{2h} \), \(C_{2v} \) and \(C_s \), respectively (from the left). Here and throughout in the following it is assumed \(r > 1 \). A total which does not take symmetry into account, viz.

\[
J_r = (q-3)^{r-2}
\]

counts the \(D_{2h} \) systems once, the \(C_{2h} \) and \(C_{2v} \) systems twice each and the \(C_s \) systems four times:

\[
J_r = D_r + 2C_r + 2M_r + 4A_r. \tag{5}
\]

On eliminating \(A_r \) from (3) and (5) and inserting from (4) one obtains

\[
I_r = \frac{1}{4} [(q-3)^{r-2} + 3D_r + 2C_r + 2M_r]. \tag{6}
\]

In consequence, it is needed to derive the numbers of the symmetrical systems.

For every \(r \), \(D_r = 1 \) when \(q \) is even. On the other hand, \(D_2 = 1, D_r = 0 \) (\(r > 2 \)) when \(q \) is odd. In summary,

\[
D_r = \frac{1}{2} [1 + (-1)^q] + \frac{1}{2} [1 - (-1)^q] \binom{2}{r}. \tag{7}
\]

It is recalled that \(\binom{a}{b} = 0 \) when \(b > a \).
In counting the C_{2h} systems, the crucial quantity, to be compared with (2), is

$$H_{[r/2]} = (q-3)^{[r/2]-1}. \quad (8)$$

In the cases when $C_r \neq 0$, $H_{[r/2]}$ counts the D_{2h} systems once and the C_{2h} systems twice each. If both q and r are odd numbers, then $C_r = 0$. In general, one finds

$$\frac{1}{2}(1 + (-1)^q + \frac{1}{2}[1-(-1)^q][1 + (-1)^r])H_{[r/2]} = D_r + 2C_r. \quad (9)$$

Herefrom C_r is available (as a function of q and r) by means of (7) and (8). Fig.1 shows some simple examples of unbranched cataply-q-gons of C_{2h} symmetry.

$q = 5$

$\begin{array}{c}
\includegraphics[width=0.2\textwidth]{fig1a}
\end{array}$

$q = 6$

$\begin{array}{c}
\includegraphics[width=0.2\textwidth]{fig1b}
\end{array}$

$r = 4$

$r = 5$

Fig. 1

With regard to C_{2v} symmetry, one has firstly the C_r systems which correspond to those of the C_{2h} symmetry as cis/trans isomers. Secondly, one has the remaining systems, which only occur for odd r; such a system consists of two branches attached to
a central polygon. Some simple examples are furnished by Fig. 2. Let the numbers of the latter category be identified by the symbol K_r so that

$$M_r = C_r + K_r.$$ \hspace{1cm} (10)

It is found that

$$K_r = \frac{1}{2} \lfloor 1 - (-1)^r \rfloor [(q-3)/2] \lfloor r/2 \rfloor.$$ \hspace{1cm} (11)

Here the factor $[(q-3)/2]$ indicates the number of nonequivalent sites for attaching the two branches to the central q-gon. Furthermore, $H_{[r/2]}$ is found in (8).

On combining the formulas (6)-(11), one obtains the final result for the numbers of nonisomorphic unbranched catapoly-q-gons in the compact form:
\[
I_r = \frac{1}{4}(q-3)r^{-2} + \frac{1}{8}[1 + (-1)^q] + \frac{1}{8}[1 - (-1)^q]r^2 + \\
\frac{1}{4}(1 + (-1)^q \cdot \frac{1}{2}(-1)^q[1 + (-1)^q] + \\
[1(-(-1)^r][q-3/2])q-3][r/2]-1, \quad r > 1. \tag{12}
\]

4. Numerical results

Numerical results of \(I_r \) for \(5 \leq q \leq 10 \) are listed in Table. They are consistent with the previous data from literature [1-15] as far as they are known, and a substantial extension of

\(r = 5, \ q = 7 \)

Fig. 3. The 20 nonisomorphis unbranched catapentaheptagons
<table>
<thead>
<tr>
<th>(r)</th>
<th>(q)</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(1^a)</td>
<td>(1^d)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(1^a)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(2^b)</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(3^a)</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(6^b)</td>
<td>25</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(10^a)</td>
<td>70</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(20^b)</td>
<td>196</td>
<td>1056</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(36^c)</td>
<td>574</td>
<td>4160</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(72^c)</td>
<td>1681</td>
<td>16512</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(r)</th>
<th>(q)</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>63</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>169</td>
<td>342</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>819</td>
<td>1998</td>
<td>4300</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3969</td>
<td>11772</td>
<td>29584</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19719</td>
<td>70308</td>
<td>206572</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>97969</td>
<td>420552</td>
<td>1442401</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Elk (1987) [15].

\(^b\) Balaban (1970) [14].

\(^c\) Dobrynin (1991) [12].

\(^d\) Balaban and Harary (1968) [1].
<table>
<thead>
<tr>
<th>$r = 5, q = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{2h}</td>
</tr>
</tbody>
</table>

Fig. 4. The 39 nonisomorphic unbranched catapentaoctagons
these data is presented here. The data of Table can of course be extended further by equation (12).

For \(q = 4 \) in particular, one has obviously \(I_r = 1 \) for all \(r \). This (trivial) result is also consistent with (12). Furthermore, for \(q = 3 \) one has \(I_2 = 1, I_r = 0 \) when \(r > 2 \); in other words \(I_r = \binom{2}{r} \). It is interesting that (12) also is compatible with this answer, provided that \(0^0 \) is identified with 1.

5. Illustrations

It is supposed to be instructive to illustrate some of the numbers of Table by depictions of the actual forms. The unbranched catapenta-\(q \)-gons \((r=5)\) with \(q=7 \) and \(q=8 \) were selected for this purpose. The 20 unbranched catapentaheptagons \((q=7)\) are specified in Fig.3; these systems are distributed into the symmetry groups according to \(8C_{2v} + 12C_s \). Similarly, the 39 unbranched catapentaoctagons \((q=8)\), distributed according to \(1D_{2h} + 2C_{2h} + 12C_{2v} + 24C_s \), are found in Fig.4. For the sake of convenience, the terminal polygons are indicated by heavy strokes in both of these figures.

L i t e r a t u r e

11. ELK S.B. Enumeration of the set of saturated compounds that, in theory, could be formed by the linear fusion of regular pentagonal modules, including the logical extrapolation to "helicanes" //J. Mol. Struct. (Theochem). - 1989. - Vol. 201. - P. 75-86.

Поступила в редакцию 10 ноября 1995 года