An exact method
for the \((r|p)\)–centroid problem
Ekaterina Alekseeva

jointly with
Yuri Kochetov
Alexander Plyasunov

Sobolev Institute of Mathematics
Novosibirsk, Russia
(r|p)–centroid problem

• Input:
 J is the set of users;
 I is the set of potential facilities;
 p is the total number of facilities opened by the Leader;
 r is the total number of facilities opened by the Follower;
 w_j is the profit for servicing of the user j;
 g_{ij} is the distance between the user j and the facility i;

• Output: p facilities opened by the Leader;

• Goal: maximize the total profit for the Leader.
Example

$I = J, |I| = 9$
Leader has opened p facilities. Leader’s market share is 100%.

$I=J$, $|I|=9$, $p=2$
Follower has opened \(r \) facilities.

Leader’s market share is 56%.

\[I=J, \ |I|=9, \ p= r=2 \]
Mathematical Formulation

Leader Variables \(x_i = \begin{cases} 1, & \text{if the Leader opens facility } i, \\ 0, & \text{otherwise}, \end{cases} \)

Follower Variables \(y_i = \begin{cases} 1, & \text{if the Follower opens facility } i, \\ 0, & \text{otherwise}, \end{cases} \)

User Variables \(u_j = \begin{cases} 1, & \text{if user } j \text{ is serviced by the Leader,} \\ 0, & \text{if user } j \text{ is serviced by the Follower.} \end{cases} \)

For the given solution \(x_i, i \in I \) we define the set of facilities

\[I_j(x) = \{ i \in I \mid g_{ij} < \min_{k \in I} (g_{kj} \mid x_k = 1) \} \]

which allows to “capture” the user \(j \) by the Follower.
Bilevel 0-1 Model

\[
\max_x \sum_{j \in J} w_j u_j^*(x, y^*)
\]

s.t. \[
\sum_{i \in I} x_i = p, \quad x_i \in \{0, 1\}, i \in I
\]

where \(u_j^*(x, y^*) \), \(y_i^* \) is the optimal solution of the Follower problem:

\[
\max_{u_j, y_i} \sum_{j \in J} w_j (1 - u_j)
\]

s.t. \[
1 - u_j \leq \sum_{i \in I} y_i, j \in J
\]

\[
\sum_{i \in I} y_i = r
\]

\(y_i, u_j \in \{0, 1\}, i \in I, j \in J \)
Complexity Status

| (r|p)-centroid | NP-hard, S. Hakimi, 1990 |
|----------------|--------------------------|
| | $\sum \frac{p}{2}$-hard on graph, |
| | H. Noltemeier, J. Spoerhase, H. Wirth, 2007 |
| | NP-hard on spider |
| | $O(pn^4)$ on path |
| | J. Spoerhase, H.-C. Wirth, 2008 |
| (1|p)-centroid | $O(n^2(\log n)^2 \log W)$ on tree |
| | NP-hard on pathwidth bounded graph |
| (1|1)-centroid | polynomial solvable on graph and on a network |
| | P. Hansen, M. Labbé, 1988 |
Computational Methods

- **Tabu search algorithm**, $|I| = |J| = 70, p, r \leq 3$
 S. Benati, G. Laporte, 1994
- **An alternating heuristic on the plane**, $|J| \leq 100, p, r \leq 25$
 J. Bhadury, H. A. Eiselt, J. H. Jaramillo, 2001
- **Hybrid memetic algorithm**, $|I| = |J| = 100, p = r \leq 10$
 E. Alekseeva, N. Kochetova, Y. Kochetov, A. Plyasunov, 2009
- **The partial enumeration algorithm**, $|I| \leq 50, |J| \leq 100, p, r \leq 5$
 C.M.C. Rodríguez, J.A. Moreno Pérez, 2008
- **Three MIP models**, $|I| = |J| \leq 25, r = 1, p \geq 1$ (arbitrary)
 F. Plastria, L. Vanhaverbeke, 2008
Main Results

New reformulation as Integer Linear Program

An exact algorithm

Computational experiments on the large scale instances
Notations

Let \(F \) be the set of all feasible solutions of the Follower.

For \(y \in F \) define \(I_j(y) = \{ i \in I \mid g_{ij} < \min_{k \in I} (g_{kj} \mid y_k = 1) \} \), \(j \in J \)

the set of the Leader’s facilities which allows the Leader to keep client \(j \) if the Follower will use the solution \(y \).

Introduce new variables:

\[
\begin{align*}
u_j^y &= \begin{cases}
1, & \text{if client } j \text{ is served by the Leader when the Follower uses solution } y \\
0, & \text{if user } j \text{ is serviced by the Follower when the Follower uses solution } y
\end{cases}
\end{align*}
\]
Integer Linear Program

\[
\begin{align*}
\max_{UB, x, u} & \quad UB \\
\text{s.t.} & \quad \sum_{i \in I} x_i = p \\
& \quad \sum_{j \in J} w_j u_j^y \geq UB, \; y \in F \\
& \quad u_j^y \leq \sum_{i \in I_j (y)} x_i, \; j \in J, \; y \in F \\
& \quad u_j^y \in \{0, 1\}, \; j \in J, \; y \in F \\
& \quad x_i \in \{0, 1\}, \; i \in I
\end{align*}
\]
Column Generation Method for \((r|p)\)-centroid problem

1. Choose an initial family \(F\)
2. Find \(UB(F)\) and \(x(F)\)
3. Solve the Follower problem and calculate \(LB(F)\)
4. If \(UB(F) = LB(F)\) then stop
5. Add \(y(F)\) in the family \(F\) go to the step 2.
The sets $I = J$, $|I| = |J|$.

The element g_{ij} is an Euclidean distance between points $i \in I$ and $j \in J$, the points are randomly generated following the uniform distribution on a 7000*7000 square.

The profit w_j equals one for all $j \in J$ or w_j, $j \in J$ is randomly generated following the uniform distribution on a $(0, 200)$ interval.

PC Pentium Intel Core 2, 1.87 GHz, RAM 2Gb, Windows XP Professional operating system, GAMS
Optimal solutions, $|I|=100$, $p=r=5$

<table>
<thead>
<tr>
<th>$w_j = 1, j \in J$</th>
<th>$w_j \in (0, 200), j \in J$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>opt</td>
<td>**$</td>
</tr>
<tr>
<td>47</td>
<td>123</td>
</tr>
<tr>
<td>45</td>
<td>231</td>
</tr>
<tr>
<td>47</td>
<td>111</td>
</tr>
<tr>
<td>47</td>
<td>106</td>
</tr>
<tr>
<td>47</td>
<td>102</td>
</tr>
<tr>
<td>47</td>
<td>115</td>
</tr>
<tr>
<td>48</td>
<td>67</td>
</tr>
<tr>
<td>47</td>
<td>108</td>
</tr>
<tr>
<td>47</td>
<td>124</td>
</tr>
</tbody>
</table>
$|l|=50, p=7$

$|l|=50, r=7$
Leader’s Market Share, $|l|=50$, $w_j \in (0, 200)$
The Number of Iterations, $|F(p)|$, $|I|=50$, $p=r$
The Number of Iterations, $|F(p)|$, $|I|=50$, $p=7$
The Number of Iterations, $|F(p)|$, $|l|=50$, $r=7$
Conclusion

✓ \sum_{2}^{P}-hard problem has been studied
✓ A new MIP reformulation with the exp number of constraints has been suggested
✓ A new exact method has been proposed
✓ The optimal solutions for the instances with $|I|=|J|=100$ and $p=r=5$ have been found