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Abstract. A finite group G is said to be recognizable by spectrum, i. e. by the
set of element orders, if every finite group H, having the same spectrum as G, is
isomorphic to G. We proof that the simple linear groups Ln(2k) are recognizable by
spectrum for n = 2m ≥ 32.

Introduction

Given a finite group G, denote by ω(G) the spectrum of G, i. e., the set of its ele-
ment orders. A group G is said to be recognizable by spectrum (briefly, recognizable),
if every finite group H with ω(H) = ω(G) is isomorphic to G. Since a finite group
with a nontrivial normal soluble subgroup is not recognizable, of prime interest is
the recognition problem for simple and almost simple groups.

At present there is a vast list of finite and almost finite groups with solved
recognition problem. The most recent version of this list is presented in [1, Table
1]; references to some new results can be found in [2].

The overwhelming majority of recognizable groups from this list have discon-
nected prime graphs and this condition is essentially used in proof of recognizabil-
ity of these groups. This is due to the fact that given a finite simple group with
disconnected prime graph one can apply the Gruenberg —Kegel theorem when es-
tablishing some property of this group, which is named, in accord to [3], quasirec-
ognizability. A finite nonabelian simple group S is said to be quasirecognizable if
every finite group H with the same spectrum as S includes a unique nonabelian
composition factor and this factor is isomorphic to S.

Unfortunately, among finite simple groups those with disconnected prime graphs
are rather the exception than the rule. But the recently published paper [2] contains
the structural theorem which allows to start proving quasirecognizability of the
considered group under much weaker conditions. In particular, it can be applied
to almost all the finite simple groups of Lie type. In the present paper on the basis
of this result we proof recognizability of the infinite series of finite simple linear
groups over fields of characteristic 2.
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Theorem. Let L = Ln(q) where n = 2m > 32, q = 2k > 2. Then L is recognizable
by spectrum.

§ 1. Preliminaries

Let G be a finite group, ω(G) be its spectrum. The set ω(G) is ordered by
the divisibility relation and we denote by µ(G) the set of its elements which are
maximal under this relation. If p is a prime, then p-period of G is the maximal
power of p which belongs to ω(G).

Let π(G) be the set of all prime divisors of the order of G. We define a graph
on the set π(G) with the following adjacency relation: vertices p and r in π(G) are
joined by edge if and only if pr ∈ ω(G). This graph is called the Gruenberg —
Kegel graph or prime graph of G and denoted by GK(G). Guided by given graph
conception, we say that prime divisors p and r of the order of G are adjacent if
vertices p and r are joined by edge in GK(G). Otherwise primes p and r are said
to be nonadjacent.

The set of vertices of a graph is called independent, if vertices of this set are
pairwise nonadjacent. The cardinality of an independent set with maximal number
of vertices is usually called the independence number of the graph. Denote by t(G)
the independence number of the graph GK(G) of G. By analogy we denote by
t(2, G) the maximal number of vertices in independent sets of GK(G) containing
the vertex 2. We call this number the 2-independence number.

The following theorem on connection between the structure of a finite group and
the properties of its prime graph is proved in [2].

Lemma 1. Let G be a finite group satisfying two conditions:
(a) there exist three primes in π(G) pairwise nonadjacent in GK(G); i. e., t(G) ≥

3;
(b) there exists an odd prime in π(G) nonadjacent to prime 2 in GK(G); i. e.,

t(2, G) ≥ 2.
Then there is a finite nonabelian simple group S such that S ≤ G = G/K ≤

Aut(S) for the maximal normal soluble subgroup K of G. Furthermore, t(S) ≥
t(G)− 1, and one of the following statements holds.

(1) S ' Alt7 or L2(q) for some odd q, and t(S) = t(2, S) = 3;
(2) For every prime p ∈ π(G), nonadjacent to 2 in GK(G) a Sylow p-subgroup

of G is isomorphic to a Sylow p-subgroup of S. In particular, t(2, S) ≥ t(2, G).

Proof. See [2].

The independence and 2-independence numbers for all the finite simple groups
are calculated in [4]. Notice that these results and the previous lemma imply

Corollary. Let L be a finite nonabelian simple group other than L3(3), U3(3),
S4(3), Alt10, and Altn with n satisfying {r | n − 3 ≤ r ≤ n, r is prime} = ∅.
Suppose G be a finite group with ω(G) = ω(L). Then the conclusion of Lemma 1
holds true for G.

Proof. See [4, Corollary 7.2].

We use the following number-theoretic notation. If n is a natural number, then
π(n) is the set of prime divisors of n. If p ∈ π(n), then np is the maximal p-power
which divides n. By [x] we denote the integer part of x. If q is a natural number,
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r is an odd prime and (q, r) = 1, then by e(r, q) we denote the smallest natural
number m such that qm ≡ 1 (mod r). For an odd q put e(2, q) = 1 if q ≡ 1 (mod 4)
and put e(2, q) = 2 if q ≡ −1 (mod 4).

The following number-theoretic result is of fundamental importance for investi-
gations on the structure of prime graphs of the Lie type finite simple groups.

Lemma 2 (Zsigmondy). Let q be a natural number greater than 1. Then for every
natural number m there exists a prime r such that e(r, q) = m, except for the
following cases:

(1) m = 6 and q = 2;
(2) m = 2 and q = 2l − 1 for some natural number l.

Proof. See [5].

The prime r with e(r, q) = m is called a primitive prime divisor of qm − 1. If q
is fixed, we denote by rm any primitive prime divisor of qm − 1 (obviously, qm − 1
can have more than one primitive prime divisor).

Lemma 3. Let G be a finite group, K C G, and G/K be a Frobenius group with core
F and cyclic complement C. If (|F |, |K|) = 1 and F does not lie in KCG(K)/K,
then r · |C| ∈ ω(G) for some prime divisor r of |K|.
Proof. See [6, Lemma 1].

Lemma 4. Let L be a finite simple group Ln(q), q be a power of a prime p, and
d = (q − 1, n). Then

(1) qn−1−1
d is in µ(L);

(2) p-period of L is equal to pm, where m is the smallest natural number such
that n ≤ pm;

(3) for every r ∈ π(L) there is a prime s ∈ π(L) nonadjacent to r; furthermore,
if n ≥ 4 and (n, q) 6= (6, 2), (7, 2), then either a primitive prime divisor rn of qn−1
or a primitive prime divisor rn−1 of qn−1 − 1 can be taken as a prime s.

Proof. (1) See [7, Proposition 7].
(2) See [8, Proposition 0.5].
(3) If n = 2 or 3, then the claim holds since in this case the graph GK(L)

is disconnected. For L6(2), L7(2) the claim is verified directly. Let n ≥ 4 and
(n, q) 6= (6, 2), (7, 2). By Lemma 2 there exist primitive prime divisors rn and rn−1

of qn− 1 and qn−1− 1 respectively. In view of [4, Propositions 2.1, 3.1 and 4.1] the
prime r is nonadjacent either to rn or to rn−1.

Lemma 5. Let L be a finite simple group Ln(q), d = (q − 1, n).
(1) If there exists primitive prime divisor r of qn−1, then L includes a Frobenius

subgroup with core of order r and cyclic complement of order n.
(2) L includes a Frobenius subgroup with core of order qn−1 and cyclic comple-

ment of order qn−1−1
d .

Proof. (1) We use the method of constructing maximal tori of a finite group of Lie
type on a basis of maximal tori of the corresponding algebraic group, described in
[9, Chapter 3]. If X is a group and α is a automorphism of X, then denote by Xα

the centralizator of α in X.
Let Fq be the algebraic closure of the field of order q and G = SLn(Fq). Let σ

be a Frobenius automorphism of G such that G = Gσ is isomorphic to SLn(q). Let
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D be the group of diagonal matrices in G and π be the natural homomorphism of
NG(D) onto Symn. Let w be an element in NG(D) such that wσ = w and π(w) is
a cycle of length n. Put σw = σ ◦ c−1

w , where cw denotes conjugation by w. Then
T = Dσw

is a cyclic group of order qn−1
q−1 .

Let t be an element in T of order r. Since tw = tσ = tq, the element w acts on
the group 〈t〉 by conjugation. Suppose that t = tw

l

for some l. Then t = tq
l

. Hence
tq

l−1 = 1, and therefore r divides ql − 1. In view of primitivity of r, the number l
is divisible by n, that is wl = 1. Thus, F = 〈t, w〉 is a Frobenius group with core of
order r and complement of order n. Notice that F ∩ Z(G) = 〈t〉 ∩ Z(G) = 1.

By the Lang-Steinberg theorem [10], there is an element g in G such that
π(g−1gσ) = π(w). By virtue of equalities

(gt)σ = gσtσ(g−1)σ = gwtσw−1g−1 = gtσwg−1 = gt,

(gw)σ = gσw(g−1)σ = gwww−1g−1 = gw
gF lies in G and its image in G/Z(G) is the desired Frobenius group.

(2) Consider the parabolic subgroup P of SLn(q) consisting of all matrices of
the form

M(a, b) =

(
a 0

b det a−1

)
, where a ∈ GLn−1(q), b ∈ Fn−1

q .

Denote by A the subgroup of P consisting of all matrices of the form M(a,0),
where 0 is the null row in Fn−1

q . Denote by B the subgroup of all matrices of
the form M(1, b), where 1 is the identity matrix in GLn−1(q). The group P is a
semidirect product of B by A with M(1, b)M(a,0) = M(1, ba det a).

We again consider the algebraic closure Fq of the field of order q, the algebraic
group G = SLn(Fq), and the subgroup A of G, consisting of matrices

M(a, b) =

(
ā 0

0 det ā−1

)
, where ā ∈ GLn−1(Fq).

Let D be the group of diagonal matrices in A and π be a natural homomorphism
of NA(D) onto Symn−1. Let w be an element in NA(D) such that π(w) is a cycle
of length n−1. Put σw = σ◦c−1

w where cw is conjugation by w. Then T = Dσw is a
cyclic group of order qn−1−1 generated by t = diag(λ, λq, . . . , λqn−2

, λ(1−qn−1)/(q−1)),
where λ is a primitive qn−1 − 1-th root of unity. Just as above, choose g ∈ A such
that gt ∈ A and denote by C the group generated by gt.

Suppose that an element M(c,0) of C centralizes some nontrivial element of B.
Then bcdet c = b with b 6= 0. Therefore, the matrix c det c has 1 as an eigenvalue.
Since c is conjugate to diag(λ, λq, . . . , λqn−2

) where λqn−1−1 = 1, the eigenvalues of
c det c are equal to λqi · λ(1−qn−1)/(q−1), 0 ≤ i ≤ n− 2. If λqi · λ(1−qn−1)/(q−1) = 1,
then λqi(q−1) = 1. Therefore, λq−1 = 1. Hence M(c,0) ∈ Z(SLn(q)). Thus, the
kernel of action of C on B is Z(SLn(q)), and all the other elements of C act on
B fixed-point-freely. So the image of BC in Ln(q) is the desired Frobenius group.
The lemma is proved.

Remark. The proof of the second assertion of the lemma belongs to A. V. Zavar-
nitsin and is published in [11, Lemma 3]. Since this source is not widely available,
we cite, with the kind permission of the author, the slightly modified proof in this
paper.
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Table 1. Simple groups S with t(S) ≥ 15 and t(2, S) ≥ 3

S Additional conditions on S t(2, S) ρ(2, S) \ {2} t(S)

Altn n, n− 2 are prime 3 {n, n− 2}
n ≥ 137 n− 1, n− 3 are prime 3 {n− 1, n− 3}
An−1(q) 2 < (q − 1)2 = n2 3 {rn−1, rn}

[
n+1

2

]

n ≥ 29 q even 3 {rn−1, rn}
2 < (q + 1)2 = n2 3 {r2n−2, rn}

2An−1(q) q even n ≡ 0 (mod 4) 3 {r2n−2, rn}
n ≥ 29 n ≡ 1 (mod 4) 3 {rn−1, r2n}

[
n+1

2

]

n ≡ 2 (mod 4) 3 {r2n−2, rn/2}
n ≡ 3 (mod 4) 3 {r(n−1)/2, r2n}

Bn(q), n≥19 q even 3 {rn, r2n}
[
3n+5

4

]

Dn(q) q ≡ 5 (mod 8) n ≡ 1 (mod 2) 3 {rn, r2n−2}
n ≥ 20 q even n ≡ 0 (mod 2) 3 {rn−1, r2n−2}

[
3n+1

4

]

n ≡ 1 (mod 2) 3 {rn, r2n−2}
2Dn(q) q ≡ 3 (mod 8) n ≡ 1 (mod 2) 3 {r2n−2, r2n}
n ≥ 19 q even n ≡ 0 (mod 2) 4 {rn−1, r2n−2, r2n}

[
3n+4

4

]

n ≡ 1 (mod 2) 3 {r2n−2, r2n}

§ 2. Proof of the Theorem

Through this paragraph we consider the classical groups of Lie type and denote
them according to [12]. Sometimes we use notations Aε

n(q) and Dε
n(q), where ε ∈

{+,−} and A+
n (q) = An(q), A−n (q) = 2An(q), D+

n (q) = Dn(q), D−
n (q) = 2Dn(q).

Let L = Ln(q) = An−1(q) where n = 2m ≥ 32, q = 2k ≥ 2. By [4, § 8], we have
t(L) ≥ 16 and t(2, L) = 3. Furthermore, item (2) of Lemma 4 implies that 2-period
of L is equal to n = 2m.

Let G be a finite group with ω(G) = ω(L) and K be the maximal normal soluble
subgroup of G. By Lemma 1 there is a finite nonabelian simple group S such that
S ≤ G = G/K ≤ Aut(S); moreover, t(S) ≥ t(G)− 1 and either t(S) = t(2, S) = 3,
or t(2, S) ≥ t(2, G). Since t(G) = t(L) ≥ 16 and t(2, G) = t(2, L) = 3, the group
S must satisfy t(S) ≥ 15 and t(2, S) ≥ 3. By using [4, § 8], we compose a table
of the all finite nonabelian simple groups satisfying these conditions. For every
group S the table shows 2-independence number and some independent set ρ(2, S)
of GK(S) with maximal number of vertices among those containing the vertex 2.
Furthermore, for every group of Lie type the table gives independence number as
a function of Lie rank.

If not specified rn, rn−1, and rn−2 are some fixed primitive prime divisors of
qn−1, qn−1−1, and qn−2−1 respectively. By definition of primitive prime divisor,
these numbers are pairwise distinct. By [4, Proposition 3.1] primes rn and rn−1 are
nonadjacent to 2 in GK(L), and so in GK(G) as well. Consequently, by Lemma 1
these primes divide the order of S.

Let S = Altn′ . Then n′ ≥ 137 and there are two primes among numbers n′, n′−1,
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n′− 2, n′− 3; these are rn and rn−1. By [7, Proposition 7] we have 4 · rn−2 6∈ ω(L),
although 2 · rn−2 ∈ ω(L). Suppose that rn−2 divides the order of S. Since S does
not contain an element of order 4 · rn−2, then n′ ≥ rn−2 ≥ n′ − 5. Thus, there
are three primes among six consecutive numbers n′, . . . , n′ − 5, which is impossible
since n′ ≥ 137. So rn−2 lies in π(K)∪ π(Out(S)). Since π(Out(S)) = {2}, we have
rn−2 ∈ π(K).

Denote rn−2 by r. Let G̃ = G/Or′(K) and K̃ = K/Or′(K). Then R = Or(K̃) 6=
1. Suppose that K̃ = R. The group S acts faithfully on K̃. Otherwise, in view of
its simplicity S centralizes K̃ and, therefore, G contains an element of order 4 · r.
The group Alt6, and so S as well, includes a Frobenius group F with core of order
9 and cyclic complement of order 4. By applying Lemma 3 to the preimage of F

in G̃, we obtain that 4 · r ∈ ω(G); a contradiction. Suppose K̃ 6= R. There is a
prime t such that T = Ot(K̃/R) is nontrivial. Since Or′(K̃) = 1, the group T acts
faithfully on R. Then T acts faithfully on R̂ = R/Φ(R), where Φ(R) is the Frattini
subgroup of R, as well. Denote by Ĝ the factorgroup G̃/Φ(R). By Lemma 4 at
least one of the primes rn and rn−1 is nonadjacent to t in ω(G). Denote this prime
by s. Let x be an element of order s in Ĝ/R̂. Then H = T 〈x〉 is a Frobenius
subgroup in Ĝ/R̂. The preimage of H in Ĝ satisfies conditions of Lemma 3, hence
G contains an element of order r · s, which contradicts [4, Proposition 2.1].

Let S = Aε
n′−1(q

′) where q′ is odd. Then n′2 = (q′ − ε1)2 > 2 and t(S) = n′/2.
Since t(S) ≥ t(G)−1 and t(G) = n/2, we have n′/2 ≥ n/2−1. Whence n′ ≥ n−2.
Since n ≥ 32, we have n−2 ≥ n/2+2 = 2m−1 +2. Thus n′ ≥ 2m−1 +2. Therefore,
S includes a cyclic subgroup of order q′2

m−1 − 1. In view of

q′2
m−1 − 1 = (q′ − 1)(q′ + 1)(q′2 + 1) . . . (q′2

m−2
+ 1),

we have

(q′2
m−1 − 1)2 = (q′ − 1)2(q′ + 1)2(q′2 + 1)2 . . . (q′2

m−2
+ 1)2 ≥ 4 · 2m−1 = 2m+1.

Thus 2m+1 ∈ ω(S); a contradiction.
Let S = Dε

n′(q
′) where q′ is odd. Then q′− ε1 ≡ 4 (mod 8), n′ ≡ 1 (mod 2) and

t(S) ≤ (3n′ + 3)/4. Since t(S) ≥ t(G)− 1 and t(G) = n/2, we have (3n′ + 3)/4 ≥
n/2−1, which implies n′ ≥ (2n−7)/3. Since n ≥ 32, we have (2n−7)/3 ≥ n/2+3.
Thus n′ ≥ n/2 + 3. As Dε

n′(q
′) includes the universal covering of An′−2(q′), by

repeating the above argumentation we obtain that 2m+1 ∈ ω(S); a contradiction.
Now let S be a group of Lie type over field of order 2k′ . Choose primitive

prime divisors rn and rn−1 of qn − 1 and qn−1 − 1 such that e(rn, 2) = nk and
e(rn−1, 2) = (n − 1)k. As noticed above, rn and rn−1 divide the order of S. Put
en = e(rn, 2k′) and en−1 = e(rn−1, 2k′). Since rn divides 2enk′ −1, we have that nk
divides enk′. By the same reason, (n−1)k divides en−1k

′. Suppose that enk′ > nk.
Then a prime r with e(r, 2) = enk′ divides the order of S and does not divide the
order of L. Therefore, r ∈ ω(S) \ ω(G), which is impossible. Thus, enk′ = nk.
Suppose that en−1k

′ > (n − 1)k. Then en−1k
′ ≥ 2(n − 1)k > nk, and the similar

argumentation leads us to contradiction. Thus, en−1k
′ = (n − 1)k. Notice that

en > en−1.
Since rn and rn−1 are nonadjacent to 2 in GK(S), then [4, Proposition 3.1]

imposes some restrictions on en and en−1, which will be used in the further consid-
eration.
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If S = An′−1(2k′), then en, en−1 ∈ {n′, n′−1}. Hence n′k′ = nk and (n′−1)k′ =
(n− 1)k, which implies k′ = k, n′ = n, and S ' L.

Let S = 2An′−1(2k′). If n′ ≡ 0 (mod 4), then en, en−1 ∈ {2n′ − 2, n′}. Hence
2(n′ − 1)k′ = nk and n′k′ = (n − 1)k, which implies 2k′ = (n − 2)k and n′ − 1 =
n/(n− 2). Since n ≥ 32, the number n/(n− 2) cannot be integer; a contradiction.
If n′ ≡ 2 (mod 4), then en, en−1 ∈ {2n′ − 2, n′/2}. Therefore 2(n′ − 1)k′ = nk
and n′k′ = 2(n − 1)k, whence 2k′ = (3n − 4)k and n′ − 1 = n/(3n − 4). But
n′ = n/(3n−4)+1 cannot be integer. If n′ ≡ 1 (mod 4), then en, en−1 ∈ {2n′, n′−
1}. Hence 2n′k′ = nk and (n′ − 1)k′ = (n − 1)k, which implies 2k′ = (2 − n)k.
Since 2 − n < 0, we have k′ < 0, which is impossible. If n′ ≡ 3 (mod 4), then
en, en−1 ∈ {2n′, (n′ − 1)/2}. Therefore, 2n′k′ = nk and (n′ − 1)k′ = 2(n − 1)k,
whence 2k′ = (4− 3n)k and k′ < 0; a contradiction.

If S = Bn′(2k′), then en, en−1 ∈ {2n′, n′}. Thus 2n′k′ = nk and n′k′ = (n− 1)k,
which implies n = 2; a contradiction.

If S = Dn′(2k′) and n′ is even, then en, en−1 ∈ {2n′−2, n′−1}. Just as above we
obtain that n = 2. If n′ is odd, then en, en−1 ∈ {2n′ − 2, n′}, but we have already
proved that this case is impossible.

If S = 2Dn′(2k′), then en, en−1 ∈ {2n′, 2n′ − 2, n′}. Above we have examined
all possibilities, except for 2n′k′ = nk and 2(n′ − 1)k′ = (n− 1)k. These equalities
implies that n′ = n, k′ = k/2, and S = 2Dn(2k/2). It follows from [8, Proposition
0.5] that 2-period of S is equal to 2m+1 and, therefore, is greater than 2-period of
G; a contradiction.

Thus S ' L and quasirecognizability is proved.
The remaining part of the proof can be carried out under weaker conditions on

n and q, so it is arranged as two propositions.

Proposition 1. Let L = An−1(q) where n = 2m ≥ 4, q = 2k ≥ 2. Let G be a
finite group and K be its nontrivial normal soluble subgroup satisfying L ≤ G/K ≤
Aut(L). Then ω(G) 6⊆ ω(L).

Proof. There exist a prime r such that Or(K) 6= K. Denote by G̃ and K̃ the
factorgroups G/Or(K) and K/Or(K) respectively. The group K̃ is a nontrivial
r-group. Let Φ(K̃) be the Frattini subgroup of K̃. Denote by Ĝ and K̂ the
factorgroups G̃/Φ(K̃) and K̃/Φ(K̃) respectively. Since G/K ' Ĝ/K̂, it is sufficient
to proof that ω(Ĝ) 6⊆ ω(L). Therefore, we may assume that G = Ĝ and K = K̂ is
a nontrivial elementary abelian r-group.

Suppose that C = CG(K) 6= K. Since C is normal in G and L is simple, C/K
includes L. Therefore, r · ω(L) ⊆ ω(C) ⊆ ω(G), which contradicts item (3) of
Lemma 4. Thus, C = K and L acts faithfully on K.

Let r = 2. By item (1) of Lemma 5 the group L includes a Frobenius subgroup
with core of odd order and cyclic complement of order n. By applying Lemma 3,
we obtain that 2 ·n = 2m+1 ∈ ω(G). By item (2) of Lemma 4 we have that 2-period
of L is equal to 2m, i. e., 2m+1 6∈ ω(L).

Let r 6= 2. By item (2) of Lemma 5 the group L includes a Frobenius subgroup
with core of order qn and cyclic complement of order (qn−1 − 1)/d. By applying
Lemma 3, we obtain that r · (qn−1 − 1)/d ∈ ω(G). On the other hand, by item (1)
of Lemma 4 we have r · (qn−1 − 1)/d 6∈ ω(L). The proposition is proved.

Proposition 2. Let L = An−1(q) where n ≥ 10, q = 2k ≥ 2, and (q − 1, n) = 1.
Suppose that L < G ≤ Aut(L). Then ω(G) 6⊆ ω(L).
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Proof. The group G includes a subgroup G1 = L〈α〉 such that the image of α in
Out(L) is of a prime order r. It is sufficient to show that ω(G1) 6⊆ ω(L). So we
may assume that G = G1.

The group Aut(L) has a normal series L ≤ L̃ ≤ Aut(L), where the factor L̃/L
is isomorphic to the group of field automorphisms, a cyclic group of order k, and
the factor Aut(L)/L̃ is isomorphic to the group of graph automorphisms, a cyclic
group of order 2.

Let r = 2. If α 6∈ L̃, then α is either a graph automorphism or a product of a
graph and an involutive field automorphisms. In the first case CL(α) ' Cn/2(q)
if n is even and CL(α) ' B(n−1)/2(q) if n is odd. Therefore, 2 · rn ∈ ω(G) or
2 · rn−1 ∈ ω(G). In the second case q = q2

0 , CL(α) includes a subgroup isomorphic
to 2An−1

(
q0

)
, and we have, again depending on evenness of n, either 2·rn−1 ∈ ω(G)

or 2 · rn ∈ ω(G). Since rn and rn−1 are nonadjacent to 2 in ω(L), the claim holds
for α 6∈ L̃.

Now let α be an involutive field automorphism induced by an automorphism
ϕ of field Fq and u be an element of Fq such that u + uϕ 6= 0. Consider the
product of α and the unipotent element x ∈ L of the form x1(u)x2(u) . . . xn−1(u)
where x1, x2, . . . , xn−1 are root elements corresponding to the fundamental roots of
system An−1. The element

(xα)2 = x1(u)x2(u) . . . xn−1(u)x1(uϕ)x2(uϕ) . . . xn−1(uϕ)

lies in L and, in virtue of the Chevalley commutator formula [12, Theorem 5.2.2],
can be reduced to the form x1(u + uϕ) . . . xn−1(u + uϕ)y, where y is a product of
root elements corresponding to nonfundamental positive roots. Since u + uϕ 6= 0,
by [9, Proposition 5.1.3] the element (xα)2 is regular and, therefore, its order equals
to 2-period of L (see the proof of Proposition 0.5 in [8]). Hence the order of xα is
twice larger than 2-period of L. Thus ω(G) 6⊆ ω(L).

Let r 6= 2. Then α is a field automorphism and CL(α) ' An−1(q0) where
q0 = 2k/r. Put s = e(r, q). We remind that s is the smallest natural number such
that qs − 1 is divisible by r. If s > n, then r ∈ ω(G) \ ω(L); if s = n, n − 1, then
2r ∈ ω(G) \ ω(L). Thus we may assume that 1 ≤ s ≤ n − 2. Before we begin
consideration of cases depending on s, let us observe that if e(p, q0) equals t and
(t, r) = 1, then e

(
p, qr

0

)
equals t as well. In other words, if t 6= 6 and (t, r) = 1,

there is a primitive prime divisor of qt − 1 which divides qt
0 − 1.

Let s = 1, i. e., r | q − 1. By hypothesis, we have (n, r) = 1. Therefore, there
exists a primitive prime divisor rn of qn−1 which divides qn

0 −1. It follows from [4,
Proposition 4.1] that r · rn 6∈ ω(L). On the other hand, r · rn ∈ r · ω(An−1(q0)) ⊆
ω(G).

Let 2 ≤ s ≤ n − 2. Among numbers n, n − 1, . . . , n − s + 1 there is only one
divisible by s. Among the remaining s − 1 numbers we can choose a number t
coprime to r and not equal to 6, except for the case when s = 2 and r | n − 1.
We consider this case later and for the present we assume that such t is chosen.
Since (t, r) = 1, there is a primitive prime divisor rt of qt− 1 dividing qt

0− 1. Since
t+s > n and s - t, by [4, Proposition 2.1] we have r ·rt 6∈ ω(L). On the other hand,
r · rt ∈ r · ω(An−1(q0)) ⊆ ω(G).

Let s = 2 and r | n−1. As follows from [13, Proposition 4.3], if C is a centralizer
of involution in L, then ω(C) ⊆ ω(SLn−2(q)). Let n be even. Since (n− 3, r) = 1
and 2 - n−3, by repeating above argumentation we can find a prime divisor rn−3 of



ON RECOGNITION BY SPECTRUM 9

qn−3
0 −1 such that rn−3 ·r 6∈ ω(An−3(q)). Since the order of the center of SLn−2(q) is

coprime to both rn−3 and r, we have rn−3·r 6∈ ω(SLn−2(q)). Thus, 2·rn−3·r 6∈ ω(L).
On the other hand, 2 · rn−3 ∈ ω(A1(q0) × An−3(q0)) ⊆ ω(An−1(q0)), therefore,
2 · rn−3 · r ∈ ω(G). Let n be odd. In the similar way we can find a prime divisor
rn−2 of qn−2

0 −1 such that 2 ·rn−2 ·r 6∈ ω(L) and 2 ·rn−2 ·r ∈ ω(G). The proposition
is proved.

Now we return to the proof of the theorem. In view of Proposition 1 the soluble
radical K of G is trivial. If G is not isomorphic to L, then by Proposition 2 we
have ω(G) 6⊆ ω(L). This contradiction completes the proof of the theorem.
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