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For coupled channels D0Kþ, DþK0, Dþ
s η, and Dþ

s π
0, the S-wave scattering amplitudes are constructed

taking into account the mixing of the isoscalar resonance D�
s0ð2317Þþ with nonresonance amplitudes with

isospin I ¼ 1. The phenomenological approach we use allows us to quite simply clear up the general
structure of the D�

s0ð2317Þþ → Dþ
s π

0 decay amplitude violating isospin. We show that the phase of this
amplitude coincides with the phase of the nonresonanct Dþ

s π
0 scattering amplitude in agreement with the

Watson theorem. Its modulus squared, as it should be, determines the width of the resonance peak in the
Dþ

s π
0 channel. Taking into account the π0 − η mixing in internal lines up to the second order inclusively

ensures that the unitarity condition is fulfilled. The presented analysis complements the description of the
D�

s0ð2317Þþ → Dþ
s π

0 decay based on the coupled channel unitarized chiral perturbation theory. The
numerical estimates obtained by us for the D�

s0ð2317Þþ → Dþ
s π

0 decay width do not contradict those
available in the literature.

DOI: 10.1103/jwkb-3zl9

I. INTRODUCTION

The isospin violating decay of theD�
s0ð2317Þ� state with

IðJPÞ ¼ 0ð0þÞ into D�
s π

0 [1–4] has been a unique ground
for fruitful theoretical studies for over 20 years [5–15].
The main sources of isotopic invariance violation in
D�

s0ð2317Þ� → D�
s π

0 decays are the mass differences
between charged and neutral D-mesons and kaons, and
the π0 − η mixing [5–15]. The most popular scheme for
calculating the amplitudes of the D�

s0ð2317Þþ production
with its subsequent decay intoDþ

s π
0 is the coupled channel

unitarized chiral perturbation theory adapted to describe the
interactions of the light pseudoscalar mesons with the open
charm ones, see for review [9–14,16–20] and references
therein. The discovery of D�

s0ð2317Þþ was great luck for
this scheme. The point is that the unknown subtraction
constant present in it can be selected so that in the
unitarized amplitudes under the thresholds of the coupled
DK and Dsη channels there appears a pole corresponding
to the bound state with the mass of the experimentally
observed D�

s0ð2317Þþ phenomenon [9–14,16–20]. Such a
dynamically generated state in the system of DK and Dsη
pairs is often referred to as a hadronic molecule [14,17–20].

According to one of the latest theoretical estimates [13], the
decay width ΓðD�

s0ð2317Þþ → Dþ
s π

0Þ is ð132� 7Þ keV of
which the contribution from the π0 − ηmixing accounts for
ð20� 2Þ keV, the contribution from the difference between
theD0Kþ andDþK0 loops accounts for ð50� 3Þ keV, and
the rest is due to constructive interference between the two
isospin violation mechanisms. Although the estimates of
individual contributions to ΓðD�

s0ð2317Þþ → Dþ
s π

0Þ [5–15]
show a noticeable scatter, they agree with each other in order
of magnitude. From the experiments it is known that the total
width of theD�

s0ð2317Þþ phenomenon Γ < 3.8 MeV and its
decay fraction to Dþ

s π
0 is ð100þ0

−20Þ% [4].
In this paper, we use a phenomenological approach to

constructing the amplitudes of processes involving the
D�

s0ð2317Þþ phenomenon, which has isospin I ¼ 0 [4]
and at the same time the only kinematically admissible
hadronic decay to the channel Dþ

s π
0 with I ¼ 1 violating

isotopic invariance. The presence of the cs̄ pair in the quark
structure of the D�

s0ð2317Þþ state indicates its possible
significant couplings with the closed D0Kþ, DþK0, and
Dþ

s η channels, as well as, due to the π0 − η mixing, with
the decay channel into Dþ

s π
0. The manifestation of the

D�
s0ð2317Þþ in the amplitudes of the indicated channels is

described by simple resonance type expressions in Sec. II.
In this Section, we also construct simple expressions for the
S-wave nonresonance scattering amplitudes with I ¼ 1

associated with the D0Kþ, DþK0, and Dþ
s π

0 channels,
as well as, due to the π0 − η mixing, with the Dþ

s η channel.
The scattering amplitudes taking into account the mixing
of the isoscalar resonance D�

s0ð2317Þþ with nonresonance
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amplitudes with isospin I ¼ 1 are constructed in Sec. III.
The obtained formulas for the complex of mixed ampli-
tudes with I ¼ 0 and 1 allow us to determine the general
structure of the amplitude of the isospin violating decay
D�

s0ð2317Þþ → Dþ
s π

0. By the general structure we mean
the main contributions that form the decay D�

s0ð2317Þþ →
Dþ

s π
0. Using tentative values for the parameters at our

disposal, we present at the end of Sec. III numerical
estimates for the decay width ΓðD�

s0ð2317Þþ → Dþ
s π

0Þ.
Brief conclusions from the analysis performed are pre-
sented in Sec. IV. Several cumbersome formulas are placed
in the Appendix.

II. UNMIXED AMPLITUDES WITH I = 0 AND 1

A. I = 0 sector

Consider a state with the open charm C ¼ þ1, strange-
ness S ¼ þ1, isospin I ¼ 0, spin-parity JP ¼ 0þ, and mass
mr ≃ 2317.8 MeV associated with closed D0Kþ, DþK0,
and Dþ

s η channels (the thresholds of these channels are
2358.517 MeV, 2367.111 MeV, and 2516.212 MeV,
respectively). We denote it as D�

s0ð2317Þþ. In the limit of
isotopic invariance, such a state is stable. However, π0 − η
mixing leads to the possibility of its decay with violation of
isotopic invariance to the Dþ

s π
0 channel, the threshold of

which is 2103.327 MeV, as well as to the possibility of
Dþ

s π
0 scattering via the D�

s0ð2317Þþ intermediate state

[see diagrams (a) and (b) in Fig. 1]. The coupling of the
isoscalarD�

s0ð2317Þþ state with theDþ
s π

0 system due to the
π0 − η mixing leads to a corresponding contribution to its
polarization operator. In order to correctly calculate this
contribution in the second order in the amplitude of the
π0 − η mixing, Ππ0η, we consider the system of equations
graphically depicted in Fig. 2 for the propagators of the
mixed η and π0 mesons and the propagators of the π0 ↔ η
transitions denoted as Gηðq2Þ, Gπðq2Þ and Gηπðq2Þ ¼
Gπηðq2Þ, respectively. The propagators of unmixed η̃ and
π̃0 mesons are Gη̃ðq2Þ ¼ 1=Dη̃ðq2Þ ¼ 1=ðm2

η̃ − q2Þ and
Gπ̃ðq2Þ ¼ 1=Dπ̃ðq2Þ ¼ 1=ðm2

π̃ − q2Þ. Solving the equa-
tions in Fig. 2, we find

Gηðq2Þ ¼
Dπ̃ðq2Þ

Dη̃ðq2ÞDπ̃ðq2Þ−Π2
π0η

; Gηðq2Þ ¼
Dη̃ðq2Þ

Dη̃ðq2ÞDπ̃ðq2Þ−Π2
π0η

; Gηπðq2Þ ¼ Gπηðq2Þ ¼
Ππ0η

Dη̃ðq2ÞDπ̃ðq2Þ−Π2
π0η

:

ð1Þ

Further the easiest way to proceed is as follows. Consider, for example, for Gηðq2Þ the chain of equalities,

Gηðq2Þ ¼
1

Dη̃ðq2Þ −
Π2

π0η

Dπ̃ðq2Þ

¼ 1

Dηðq2Þ −
Π2

π0η

Dπ̃ðq2Þ þ
Π2

π0η

Dπ̃ðm2
ηÞ

¼ 1

Dηðq2Þ
þ Ππ0η

Dηðq2Þ
�

1

Dπðq2Þ
−

1

Dπðm2
ηÞ
�

Ππ0η

Dηðq2Þ
¼ 1

Dηðq2Þ
þ Ππ0η

m2
η −m2

π

�
Ππ0η

Dηðq2ÞDπðq2Þ
�
: ð2Þ

Here in the second equality the η̃ meson mass has been
renormalized in the second order of perturbation theory in
Ππ0η and the notation Dηðq2Þ ¼ m2

η − q2 is introduced,
where m2

η is the renormalized (physical) mass of η. Further,

without violating the accuracy of the approximation, we
can use the physical value for the π meson mass every-
where, i.e., replaceDπ̃ðq2Þ byDπðq2Þ ¼ m2

π − q2. The third
and fourth equalities are differently written first terms of the

(a) (b)

FIG. 1. (a) Decay of the I ¼ 0 state, D�
s0ð2317Þþ, into Dþ

s π
0.

(b) Dþ
s π

0 scattering via the D�
s0ð2317Þþ intermediate state

resulting from the π0 − η mixing. Each black circle in this figure,
as well as in Figs. 2, 3, and 6, denotes the π0 − η mixing
amplitude Ππ0η.

FIG. 2. Equations for propagators of the mixed η and π0 mesons and propagators of the π0 ↔ η transitions; the argument q2, on which
the propagators depend, is omitted in the figure (the notations are explained in detail in the text).
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expansion of Gηðq2Þ in Π2
π0η

(which operate within the

second order of perturbation theory). Note that the ex-
pression in parentheses in the last equality is the transition
propagator Gηπðq2Þ written in the first order in Ππ0η. The
expressions for the propagator Gηðq2Þ and similar expres-
sions for the propagator Gπðq2Þ obtained to the second
order in Ππ0η will be used below in calculating the
polarization operators.
Let us proceed to the definition of the polarization

operator of theD�
s0ð2317Þþ resonance. For short, we denote

the channels D0Kþ, DþK0, Dþ
s η, and Dþ

s π
0 by numbers 1,

2, 3, and 4, respectively. The S-wave amplitudes TI
ijðsÞ for

the reactions i → j corresponding to the contribution of the
D�

s0ð2317Þþ resonance with I ¼ 0 are written in the form

T0
ijðsÞ ¼

g0i g
0
j

D0
rðsÞ

¼ g0i g
0
j

m2
r − sþ ReΠ0

rðm2
rÞ − Π0

rðsÞ
; ð3Þ

where i and j are the channel numbers, s is the invariant
mass squared in channel i and j, 1=D0

rðsÞ is the propa-
gator of the D�

s0ð2317Þþ resonance, g0i is its coupling
constant with channel i, in so doing g04 ¼ ϵg03, and ϵ ¼
Ππ0η=ðm2

η −m2
π0
Þ is the parameter of the π0 − η mixing.

Here we will be guided on the value of ϵ ≃ −0.014 [21,22].
The polarization operatorΠ0

rðsÞ in (3) is the sum of the self-
energy parts of the resonance D�

s0ð2317Þþ due to the
D0Kþ, DþK0, Dþ

s η, and Dþ
s π

0-intermediate states, i.e.,

Π0
rðsÞ ¼

X
i¼1;2;3

ðg0i Þ2
16π

GiiðsÞ þ
ðg03Þ2
16π

G̈44ðsÞ; ð4Þ

where the functions GiiðsÞ for i ¼ 1; 2; 3 are defined as the
dispersion two-body loop integrals subtracted at the thresh-
old of the ith channel. Explicit expressions for them are
written out in the Appendix. The two points in the notation
of the function G̈44ðsÞ indicate that we are dealing with
the second-order contribution in the amplitude Ππ0η.
According to the last two equalities in Eq. (2), the func-
tion G̈44ðsÞ can be calculated using the diagrams shown
in Fig. 3 in two equivalent ways, i.e., using either the
right-hand or the left-hand side of the equality shown in
the figure. We write the amplitude of the right-hand side of

this equality in the form Ġ34ðsÞ
Ππ0η

m2
η−m2

π0
, where Ġ34ðsÞ

denotes the first order in the Ππ0η convergent loop diagram,
diagram (c), shown in the figure. An explicit expression
for Ġ34ðsÞ is given in the Appendix; Ġ34ðsÞ ¼ Ġ43ðsÞ.
Thus, G̈44ðsÞ can be calculated by the rule G̈44ðsÞ ¼
Ġ34ðsÞ

Ππ0η

m2
η−m2

π0
. Calculating G̈44ðsÞ using diagrams (a) and

(b), which define the left-hand side of the equality in Fig. 3,
turns out to be more complicated. It is worth noting that at
the Dþ

s η threshold, the imaginary parts of diagrams (a) and
(b) in Fig. 3 have root threshold singularities, i.e., they

contain contributions ∼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ðmDþ

s
þmηÞ2

q
that cancel

out in the difference of these diagrams.
The decay width of the resonance, ΓrðsÞ, is determined

by the imaginary part of the polarization operator. In this

case, in the region of 2317 MeV,
ffiffiffi
s

p
ΓrðsÞ ¼ Im Π0

rðsÞ ¼
ðg0

3
Þ2

16π Im G̈44ðsÞ ¼ ðg0
3
Þ2

16π

Π
π0η

m2
η−m2

π0
Im Ġ34ðsÞ and therefore, due

to the mechanism of the π0 − η mixing, we have (see Fig. 3
and the Appendix)

ffiffiffi
s

p
ΓrðsÞ ¼

ðg03Þ2
16π

�
Ππ0η

m2
η −m2

π0

�
2

ρDþ
s π

0ðsÞ; ð5Þ

where ρDþ
s π

0ðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s−ðmDþ

s
þmπ0Þ2�½s−ðmDþ

s
−mπ0Þ2�

q
=s.

Diagram (a) in Fig. 1 leads to exactly the same expression
for

ffiffiffi
s

p
ΓrðsÞ (in full agreement with the unitarity condition).

Thus, we have before us a kind of “classical” resonance,
which could exist in the case of the absence (or extreme
smallness) of strong interactions in the D0Kþ, DþK0,
and Dþ

s π
0 channels with isospin I ¼ 1. Literally, such a

situation seems unlikely. Consideration at this stage of the
D�

s0ð2317Þþ meson as an isolated state with I ¼ 0 suggests
that the amplitudes due to its contribution will be used to
construct a more realistic picture of interactions in the
coupled channels under consideration.
Let us now introduce some new notations that will be

useful later. We write the coupling constants g0i as
g0i ¼ g01η

0
i , where η0i ¼ g0i =g

0
1 are dimensionless constants

on the scale of g01, and define the reduced (dimensionless)
propagator of the D�

s0ð2317Þþ resonance 1=D̃0
rðsÞ ¼

1=½D0
rðsÞ=ðg01Þ2�. In these notations T0

ijðsÞ ¼ η0i η
0
j D̃

0
rðsÞ.

Due to isotopic invariance, η01 ¼ η02 ¼ 1 and, by definition

(a) (b) (c)

FIG. 3. According to Eq. (2) there are two equivalent ways of calculating the function G̈44ðsÞ using the right-hand or left-hand side of
the equality shown in the figure. In diagram (b), hπ0iη denotes that the pion proragator 1=Dπðq2Þ is taken at q2 ¼ m2

η.
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(see above), η04 ¼ ϵη03. The value of η
0
3 can be found within

the framework of a specific model of the interaction
of the isoscalar D�

s0ð2317Þþ state with the channels
D0Kþ, DþK0, and Dþ

s η. For example, in the cs̄ model,
the relative values of the coupling constants D�

s0ð2317Þþ
with the channels D0Kþ, DþK0, and Dþ

s η are easily
determined using the diagram in Fig. 4. The usual quark
counting rule, together with the representation of the final
ss̄ pair in terms of physical states η and η0 with defined
masses (ss̄ ¼ −η cos ϑþ η0 sinϑ, where ϑ ¼ θi − θp,
θi ¼ 35.3° is the so-called ideal mixing angle and
θp ¼ −11.3° is the mixing angle in the nonet of light
pseudoscalar mesons [4]), leads to the relations
η01∶ η02∶η03 ¼ 1∶1∶ − cosϑ ¼ 1∶1∶ − 0.687. If all η0i are
known, then an estimate of the overall constant ðg01Þ2
can be obtained using the available (so far only theoretical)

values of theDK scattering length, að0ÞDK , in the channel with
I ¼ 0 [10,19,23–27]. In accordance with the calculations

[10,19,23–27] we will be guided by að0ÞDK ≈ −1 fm. Let us

express að0ÞDK through the amplitude T0
11ðsÞ þ T0

12ðsÞ ¼
2T0

11ðsÞ at the D0Kþ threshold. In our normalization
we have1

að0ÞDK ¼ 2T0
11ðsÞ

8π
ffiffiffi
s

p
���� ffiffi

s
p ¼ðmD0þmKþÞ

≈ −1 fm: ð6Þ

From here we find ðg01Þ2=ð16πÞ ≈ 1.884 GeV2 and
from Eq. (5) obtain Γrðm2

rÞ ≈ 19.3 keV. In estimating
ðg01Þ2=ð16πÞ, we neglected the negligible effect of the
π0 − η mixing. Thus, we have completely determined the
resonant amplitudes T0

ijðsÞ.

B. I = 1 sector

Let us proceed to the construction of S-wave non-
resonance amplitudes of the reactions i → j with isospin
I ¼ 1 in the s-channel T1

ijðsÞ. As a guide, we will use the
Zachariazen field theoretical model for the single-channel

S-wave scattering amplitude that was once thoroughly
investigated in the works [28–31]. The amplitude TðsÞ
in the Zachariasen model exactly coincides with the result
of the summing up of all chains of s-channel loop diagrams
in the theory with Lagrangian L ¼ −λ0φ4

a, where λ0 is the
seed coupling constant and φa is the scalar field with mass
ma [28,30,31]. In terms of renormalized quantities the
amplitude TðsÞ ¼ −λ=½1þ λ

16πGðsÞ�, where λ is the cou-
pling constant and GðsÞ is the dispersion loop integral once
subtracted (for definiteness) at s ¼ 4m2

a. For positive λ, this
model produces a “dynamic” bound state [29,30]. But for
negative values of λ, the model gives a good example of the
nonresonance scattering amplitude and phase [29,30]. We
will use one of the simplest generalizations of such an
amplitude for the case of several coupled channels with
I ¼ 1, which looks like this:

T1
ijðsÞ ¼

−λη1i η1j
D1

nðsÞ
¼ −λη1i η1j

1þ Π1
nðsÞ

; ð7Þ

where the index n indicates that the corresponding quan-
tities describe the nonresonance case, and the polarization
operator Π1

nðsÞ has the form

Π1
nðsÞ ¼

λ

16π

" X
i¼1;2;4

ðη1i Þ2GiiðsÞ þ ðη14Þ2G̈33ðsÞ
#
: ð8Þ

Here G11ðsÞ, G22ðsÞ, and G44ðsÞ are the dispersion loop
integrals subtracted at the corresponding thresholds and

the function G̈33ðsÞ ¼ −G̈44ðsÞ ¼ −Ġ34ðsÞ
Ππ0η

m2
η−m2

π0
(see

the Appendix); λ is the coupling constant; η11 ¼ −η12 ¼
1=

ffiffiffi
2

p
, η14 ¼ 1; in (7), η13 ¼ −ϵη14. Let us explain the details

of such a representation of T1
ijðsÞ. In the multichannel case,

the seed constant λ0 is replaced by a symmetric matrix λ0ij
composed of seed amplitudes of the transitions i → j. Due
to isotopic invariance, this matrix has the form

λ0ij ¼

0
B@

λ011 −λ011 λ041

−λ011 λ011 −λ041
λ041 −λ041 λ044

1
CA: ð9Þ

It contains three independent constants λ011, λ041, and λ044
corresponding to the transitions D0Kþ → D0Kþ,
Dþ

s π
0 → D0Kþ, and Dþ

s π
0 → Dþ

s π
0, respectively. Note

that in the sector with C ¼ S ¼ þ1 and I ¼ 1 all inter-
mediate states must be at least four-quark ones. We assume
that the seed interaction between the continuous spectrum
states D0Kþ, DþK0, and Dþ

s π
0 is carried out due to the

rearrangement of valence quarks in colliding particles, see
Fig. 5. In this case, the matrix λ0ij has a very simple form

FIG. 4. Coupling of the cs̄ state with channels D0Kþ, DþK0,
and Dþ

s η.

1Note that for the given mass of the bound state mr, the
possible values of að0ÞDK < 0 (due to its contribution) are limited
from below by the value −1.432 fm, which is obtained if in
T0
11ððmD0 þmKþÞ2Þ we let ðg01Þ2 tend to infinity.
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λ0ij ¼

0
B@

0 0 λ0

0 0 −λ0
λ0 −λ0 0

1
CA ð10Þ

since the rearrangement mechanism allows only the tran-
sitionsDþ

s π
0 ↔ D0Kþ andDþ

s π
0 ↔ DþK0 the amplitudes

of which due to isotopic invariance differ in sign. Never-
theless, expressions for the amplitudes T1

ijðsÞ in the original
unsubtracted form are far from trivial. In matrix notation,
the result of summing up all chains of the s channel loop
diagrams in the model with a seed interaction from Eq. (10)
has the form T̂1ðsÞ ¼ −½Î þ λ̂0Δ̂ðsÞ�−1λ̂0, where Δ̂ðsÞ ¼
BÎ þ ĜðsÞ, B is an infinite constant, and Ĝ is the diagonal
matrix of the dispersion loop integrals subtracted at the
corresponding thresholds [30]. Renormalization in the
amplitudes T1

ijðsÞ is carried out using the relation
Bð1 − 1

2B2λ2
0

Þ ¼ 1=λ, where B → ∞, λ0 → 0, but so that λ

is a finite value. After taking into account the π0 − ηmixing

[similarly to how it was done in the case of the amplitudes
T0
ijðsÞ] we obtain Eqs. (7) and (8). We also introduce the

reduced propagator 1=D̃1
nðsÞ ¼ 1=½D1

nðsÞ=ð−λÞ�. In these
terms T1

ijðsÞ ¼ η1i η
1
j=D̃

1
nðsÞ.

Thus, we have constructed the resonance amplitudes
T0
ijðsÞ in the sector with isospin I ¼ 0 and the nonreso-

nance ones T1
ijðsÞ in the sector with isospin I ¼ 1, which do

not yet know anything about each other. Now we are ready
to move on to considering the mixing of these amplitudes.

III. MIXED D�
s0ð2317Þ+ STATE

The amplitudes Tij that would take into account the
mixing of the isoscalar resonance D�

s0ð2317Þþ with the
nonresonance amplitudes with isospin I ¼ 1 can be con-
structed in the same way as was done when considering
phenomena of the a0ð980Þ − f0ð980Þ mixing [32].
Graphically, the scheme for accounting for mixing in the
form of equations for the reduced propagators dressed by
mixing G̃0ðsÞ and G̃1ðsÞ in the channels with I ¼ 0 and 1,
respectively, and for the propagators of the transition
between these channels G̃01ðsÞ and G̃10ðsÞ looks completely
similar to the scheme for accounting for mixing shown in
Fig. 2. From the corresponding equations we find that the
propagators dressed by mixing have the form

G̃0ðsÞ ¼
D̃1

nðsÞ
D̃0

rðsÞD̃1
nðsÞ− Π̃2

01ðsÞ
; G̃1ðsÞ ¼

D̃0
rðsÞ

D̃0
rðsÞD̃1

nðsÞ− Π̃2
01ðsÞ

; G̃01ðsÞ ¼ G̃10ðsÞ ¼
Π̃01ðsÞ

D̃0
rðsÞD̃1

nðsÞ− Π̃2
01ðsÞ

: ð11Þ

Here the functions Π̃01ðsÞ and Π̃10ðsÞ are polarization
operators that are nondiagonal in isotopic spin, responsible
for mixing channels with I ¼ 0 and 1; Π̃01ðsÞ ¼ Π̃10ðsÞ.
The polarization operator Π̃01ðsÞ has the form

Π̃01ðsÞ ¼
1

16π

�
η03Ġ34ðsÞη14 þ η01Ĝ11ðsÞη11 þ η01Ĝ22ðsÞη12

�
¼ 1

16π

�
− cos ϑĠ34ðsÞ þ

1ffiffiffi
2

p Ĝ11ðsÞ −
1ffiffiffi
2

p Ĝ22ðsÞ
	
:

ð12Þ

It is formed by two main sources of isotopic invariance
violation, which are the π0 − η mixing and the presence of
the mass differences between charged and neutral D
mesons and kaons. Thanks to the latter, the contributions
of the D0Kþ and DþK0 intermediate states, entering to
Π̃01ðsÞ with opposite signs, do not completely compensate
each other. The intermediate states in Π̃01ðsÞ do not have a
definite isotopic spin and therefore contribute to mixing.

The contributions to Π̃01ðsÞ are described by convergent
expressions. The function Ġ34ðsÞ has already been encoun-
tered in Sec. II (see, in particular, Fig. 3). In Π̃01ðsÞ, it is
responsible for the contribution caused by the π0 − η
mixing. The difference between the D0Kþ and DþK0

loops Ĝ11ðsÞ − Ĝ22ðsÞ [see the second and third terms in
Eq. (12)] also does not contain divergence. In so doing,
Ĝ11ðsÞ − Ĝ22ðsÞ differs from the difference of the integrals
G11ðsÞ and G22ðsÞ, subtracted at the corresponding thresh-
olds, by a constant depending on the ratios of the masses of
the particles in the loops (see the Appendix).
Using the propagators G̃ðsÞ from Eq. (11), it is easy to

construct the amplitudes Tij. The result will be exactly the
same as when opening the expression

Tij ¼ ηIi

 
D̃0

rðsÞ −Π̃01ðsÞ
−Π̃10ðsÞ D̃1

nðsÞ

!−1

I;I0
ηI

0
j : ð13Þ

Thus we get

FIG. 5. Example diagram of the quark rearrangement during
scattering.
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Tij ¼
η0i D̃

1
nðsÞη0j þ η0i Π̃01ðsÞη1j þ η1i Π̃10ðsÞη0j þ η1i D̃

0
rðsÞη1j

D̃0
rðsÞD̃1

nðsÞ − Π̃2
01ðsÞ

: ð14Þ

Let us consider in detail the amplitude T44ðsÞ≡ TDþ
s π

0→Dþ
s π

0ðsÞ corresponding to the only opened hadronic decay
channel Dþ

s π
0 in the region of D�

s0ð2317Þþ resonance, and represent it as a sum of “background þ resonance”:

T44 ¼
η04D̃

1
nðsÞη04 þ η04Π̃01ðsÞη14 þ η14Π̃10ðsÞη04 þ η14D̃

0
rðsÞη14

D̃0
rðsÞD̃1

nðsÞ − Π̃2
01ðsÞ

¼ η14η
1
4

D̃1
nðsÞ

þ


η04 þ Π̃01ðsÞη14

D̃1
nðsÞ

�
2

D̃0
rðsÞ − Π̃2

01
ðsÞ

D̃1
nðsÞ

¼ 16π

ρDþ
s π

0ðsÞ
�
e2iδ

1
0
ðsÞ − 1

2i
þ e2iδ

1
0
ðsÞTresðsÞ



: ð15Þ

The first term in the second equality in Eq. (15) is the non-
resonance amplitude T1

44ðsÞ ¼ η14η
1
4=D̃

1
nðsÞ ¼ 1=D̃1

nðsÞ ¼
16π

ρDþ
s π0

ðsÞ ½− Im D̃1
nðsÞ=D̃1

nðsÞ� ¼ 16π
ρDþ

s π0
ðsÞ e

iδ1
0
ðsÞ sin δ10ðsÞ or the

background one, and δ10ðsÞ is the background phase. The

expression η04 þ Π̃01ðsÞη14
D̃1

nðsÞ , standing in brackets in the numer-

ator of the second term in the second equality in Eq. (15),
is the amplitude of the decay of the isoscalar reso-
nance D�

s0ð2317Þþ (dressed by the background) into
Dþ

s π
0 caused by the isospin breaking. We denote it as

VresðsÞ ¼ η04 þ Π̃01ðsÞη14
D̃1

nðsÞ . Here the first term η04 ¼ ϵη03 is

due to the contribution of the first diagram in Fig. 6
and the second one is due to the contributions of the
subsequent three diagrams in this figure in accordance
with Eq. (12) for the polarization operator Π̃01ðsÞ multi-

plied by the amplitude η1
4

D̃1
nðsÞ of the nonresonant final

state interaction in the channel with I ¼ 1. Using
Eq. (7), the relation Im Ġ34ðsÞ ¼ ϵρDþ

s π
0ðsÞ (see Appendix),

the above values of ηIi , and the relation of 1=D̃1
nðsÞ with

the phase δ10ðsÞ, we obtain the following expression
for VresðsÞ:

VresðsÞ ¼ eiδ
1
0
ðsÞ
�
−ϵ cosϑ cos δ10ðsÞ þ

�
− cosϑRe Ġ34ðsÞ þ

1ffiffiffi
2

p �
Ĝ11ðsÞ − Ĝ22ðsÞ

�	 sin δ10ðsÞ
ρDþ

s π
0ðsÞ



¼ eiδ
1
0
ðsÞvresðsÞ: ð16Þ

As can be seen, the phase of the decay amplitude VresðsÞ is
determined by the phase of the nonresonance Dþ

s π
0

scattering amplitude in accordance with the Watson
theorem on the final state interaction [33] (or with the
unitarity requirement). In the normalization we use, the
D�

s0ð2317Þþ → Dþ
s π

0 decay width and the amplitude
VresðsÞ are connected by the relation

ffiffiffi
s

p
ΓresðsÞ
ðg01Þ2

¼ jVresðsÞj2
16π

ρDþ
s π

0ðsÞ: ð17Þ

It is easy to show that the imaginary part of the expression

D̃0
rðsÞ − Π̃2

01
ðsÞ

D̃1
nðsÞ [this is the denominator of the second term in

the second equality in Eq. (15)] is exactly equal to
jVresðsÞj2

16π ρDþ
s π

0ðsÞ and, therefore, determines the width of
the resonance peak in the Dþ

s π
0 channel. The expression

1=½D̃0
rðsÞ − Π̃2

01
ðsÞ

D̃1
nðsÞ � can naturally be called the reduced

propagator of the D�
s0ð2317Þþ resonance modified by the

background. The ratio Π̃2
01
ðsÞ

D̃1
nðsÞ ≡ Π̃01ðsÞ 1

D̃1
nðsÞ Π̃10ðsÞ included

in it is a polarization operator of the isoscalar state taking
into account the isovector interaction between particles in
the loops. Its real part at

ffiffiffi
s

p ¼ Mres, whereMres is the mass
of the resonance dressed by the background, together with

the contribution ðη0
3
Þ2

16π Re G̈44ðM2
resÞ [see Eqs. (3) and (4)],

determines the magnitude of the mass shift due to isospin
breaking (isotopic mass shift). Finally, taking into account
Eq. (3), we write out an expression for the resonance
amplitude TresðsÞ in Eq. (15)

FIG. 6. Diagrams contributing to the decay amplitude
D�

s0ð2317Þþ → Dþ
s π

0.
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TresðsÞ ¼
ffiffiffi
s

p
ΓresðsÞ

M2
res − sþ ReΠresðM2

resÞ − ΠresðsÞ
¼

ffiffiffi
s

p
ΓresðsÞ

DresðsÞ
;

ð18Þ

where

ΠresðsÞ ¼ Π0
rðsÞ þ g01

Π̃01ðsÞΠ̃10ðsÞ
D̃1

nðsÞ
g01: ð19Þ

If D�
s0ð2317Þþ is produced by a source with isospin

I ¼ 0, then the amplitude of its production, propagation,
and decay into Dþ

s π
0 can be written as

TprodðsÞ ¼ ΛðsÞ eiδ
1
0
ðsÞξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

p
ΓresðsÞ

p
M2

res − sþReΠresðM2
resÞ−ΠresðsÞ

; ð20Þ

where ΛðsÞ is the source amplitude, eiδ
1
0
ðsÞ is the phase of

the nonresonance Dþ
s π

0 interaction in the final state, and
ξ ¼ vresðsÞ=jvresðsÞj is the sign of the amplitude vresðsÞ, see
(16). Formula (20) follows from Eq. (14) when taking into
account in the numerator of the latter the first two terms
corresponding to the source with I ¼ 0.
Let us return to Eq. (16) for the amplitude VresðsÞ and

give the numerical values of the terms forming it at
ffiffiffi
s

p ¼
Mres ≃ 2317.8 MeV [the values of VresðsÞ and δ10ðsÞ at this
point we denote as V̄res and δ̄10, respectively]:

V̄res ¼ eiδ̄
1
0

�
0.009618 cos δ̄10 þ ½0.001888þ 0.0101372� sin δ̄10

0.257048



¼ eiδ̄

1
0

�
0.009618 cos δ̄10 þ 0.0467801 sin δ̄10

�
: ð21Þ

The value of δ̄10 is unknown. But we can trace how the
decay width of D�

s0ð2317Þþ → Dþ
s π

0 changes depending
on δ̄10. The corresponding picture is shown in Fig. 7.
Although large values of δ̄10 are almost improbable,
Eq. (21) formally allows us to set an upper limit for
ΓresðM2

resÞ. It is 476.5 keV at δ̄10 ¼ 78.4°, see Fig. 7. The
values of the background phase δ̄10 ≈ ð15–20Þ° can be
considered quite reasonable. They lead to ΓresðM2

resÞ ≈
ð95–130Þ keV (see Fig. 7). These values agree very well
with the calculations of ΓresðM2

resÞ based on the coupled
channel unitarized chiral perturbation theory and lattice
QCD [9–14]. Note that the isotopic mass shift of the
D�

s0ð2317Þþ resonance at δ̄10 ¼ 15° and 20° amounts to
−56 keV and −67 keV, respectively.

IV. CONCLUSION

From the above analysis we draw the following
conclusions.
(1) The effect of isotopic invariance violation for the

D�
s0ð2317Þþ resonance is in many ways similar to

the well-known threshold phenomenon of the
a0ð980Þ0 and f0ð980Þ resonance mixing [32].

(2) The phenomenological approach we used allowed
us to quite easily determine the general structure
of the amplitude of the isospin violating decay
of D�

s0ð2317Þþ → Dþ
s π

0 and the amplitude of the
S-wave scattering process Dþ

s π
0 → Dþ

s π
0 in the

D�
s0ð2317Þþ resonance region [see (15), (16), and

Fig. 6]. Our numerical estimates for the
D�

s0ð2317Þþ → Dþ
s π

0 decay width do not contradict
those available in the literature.

(3) It is important that the constructed model expres-
sions for the complex of mixed amplitudes with
I ¼ 0 and 1 entirely satisfy the requirements of
unitarity.

(4) Our approach is fully applicable to the description
of the mixing of the D�

s0ð2317Þþ with the supposed
resonance isovector state Tcs̄ð2327Þþ [34,35].
But here it is necessary to note that the two-humped
spectrum of πþπ− in the decay of Ds1ð2460Þþ →
Dþ

s π
þπ−, which gave a hint about the existence of

states Tcs̄ð2327Þ with isospin I ¼ 1 [35], can be
explained without their introduction [36].

(5) It would be interesting to extend such a phenom-
enological analysis to the isospin violating decay
of Ds1ð2460Þþ → D�þ

s π0. The presence of spin in
particles in this case introduces certain complica-
tions into the calculations with a purely relativistic
approach.
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FIG. 7. Solid curve shows the decay width of D�
s0ð2317Þþ →

Dþ
s π

0 at
ffiffiffi
s

p ¼ Mres ≃ 2317.8 MeV as a function of δ̄10, con-
structed using Eqs. (21) and (17) at ðg01Þ2=ð16πÞ ¼ 1.884 GeV2.
The dotted and dashed curves show the contributions due to the
π0 − η mixing (proportional to cos δ̄10) and meson loops (propor-
tional to sin δ̄10), respectively; see Eq. (16).
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APPENDIX: THE FUNCTIONS GiiðsÞ, Ġ34ðsÞ,
AND Ĝ11ðsÞ− Ĝ22ðsÞ

The function GiiðsÞ is uniquely determined by the
masses of particles a and b in the ith channel. Let
ma > mb. Then for i ¼ 1 ma ¼ mD0 and mb ¼ mKþ etc.
Let GiiðsÞ ¼ IabðsÞ. The dispersion loop integral IabðsÞ is
given by for s > mðþÞ2

ab

IabðsÞ ¼
s −mðþÞ2

ab

π

Z
∞

mðþÞ2
ab

ρabðs0Þds0
ðs0 −mðþÞ2

ab Þðs0 − s − iεÞ
¼ LabðsÞ þ ρabðsÞ

0
B@i −

1

π
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −mð−Þ2

ab

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −mðþÞ2

ab

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −mð−Þ2

ab

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −mðþÞ2

ab

q
1
CA; ðA1Þ

where mð�Þ
ab ¼ ma �mb, ρabðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −mðþÞ2

ab

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −mð−Þ2

ab

q
=s, and

LabðsÞ ¼
1

π

�
s −mðþÞ2

ab

s

�
mð−Þ

ab

mðþÞ
ab

ln
ma

mb
; ðA2Þ

for mð−Þ2
ab < s < mðþÞ2

ab ρabðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðþÞ2

ab − s
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s −mð−Þ2
ab

q
=s and

IabðsÞ ¼ LabðsÞ − ρabðsÞ

0
B@1 −

2

π
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðþÞ2

ab − s
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −mð−Þ2

ab

q
1
CA; ðA3Þ

for s < mð−Þ2
ab ρabðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðþÞ2

ab − s
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mð−Þ2
ab − s

q
=s and

IabðsÞ ¼ LabðsÞ þ
ρabðsÞ
π

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðþÞ2

ab − s
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð−Þ2

ab − s
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðþÞ2

ab − s
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð−Þ2

ab − s
q : ðA4Þ

Ġ34ðsÞ ¼
Ππ0η

m2
η −m2

π

�
G44ðsÞ − G33ðsÞ þ

1

π

�
ln

mη

mπ0
þ mDþ

s
−mη

mDþ
s
þmη

ln
mDþ

s

mη
−
mDþ

s
−mπ0

mDþ
s
þmπ0

ln
mDþ

s

mπ0

�	
: ðA5Þ

Ĝ11ðsÞ − Ĝ22ðsÞ ¼ G11ðsÞ −G22ðsÞ þ
1

π

�
ln
mDþmK0

mD0mKþ
þ mDþ −mK0

mDþ þmK0

ln
mDþ

mK0

−
mD0 −mKþ

mD0 þmKþ
ln
mD0

mKþ

�
: ðA6Þ

Let us explain the origin of the sign in the relation

G̈33ðsÞ ¼ −G̈44ðsÞ ¼ −Ġ34ðsÞ
Π

π0η

m2
η−m2

π0
[see the text below

Eq. (8)]. The function G̈33ðsÞ can be calculated in two
ways, using either the right or left sides of the equality
shown in Fig. 3, after replacing η with π0, π0 with η, and

I ¼ 0 with I ¼ 1. The function Ġ34ðsÞ is symmetric with
respect to such a replacement [see (A5)]. Therefore, the
right-hand side of this equality as a whole changes sign.
The change in sign of its left-hand side after the indicated
replacement can be verified by direct calculation.
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