ИМ СО РАН 
Вход для сотрудников

Расписание семинаров

Сегодня,

16.20 ч., ауд. 417, ИМ
Google Meet

В. Н. Берестовский, А. Мустафа
Радиус инъективности эллипсоида вращения.

Аннотация

Найдены радиусы инъективности для эллипсоидов вращения в трехмерном евклидовом пространстве, а для сплюснутого эллипсоида вращения еще и крачайшие и множества разреза. Радиус инъективности для сплюснутого эллипсоида вращения равен длине дуги экватора между ближайшими сопряженными значениями, а для вытянутого эллипсоида вращения - расстоянию вдоль двойного меридиана между его сопряжёнными симметричными относительно полюса точками и меньше половины длины экватора. В последнем случае найден и применен метод сколь угодно точных компьютерных вычислений радиуса инъективности произвольного вытянутого эллипсоида вращения.

Для сплюснутого эллипсоида вращения и сферы вычисление радиуса инъективности и поиск кратчайших и множеств разреза не требует помощи компьютера.

[1] Берестовский В. Н., Мустафа А. Радиус инъективности и кратчайшие сплюснутого эллипсоида вращения // Сиб. матем. журн. 65:1(2024), 15-26 с.

[2] Берестовский В. Н., Мустафа А. Радиус инъективности вытянутого эллипсоида вращения // Сиб. матем. журн. 66:6(2025), 16 с.

Анонсы

18.10 ч., ауд. 5251, НГУ (новый корпус)

Д. М. Анищенко (НГУ)
Логика, основанная на семантике квантовых тимов.

Аннотация

Установлено, что явления в квантовой механике имеют вероятностную природу. Например, мы не можем определить положение электрона в произвольный момент времени, но можем определить вероятностное распределение его положения, зная начальное распределение. Это можно интерпретировать, как отсутствие детерминизма в квантовой механике. Однако не все физики разделяли подобную интерпретацию. Ими была предложена концепция скрытых параметров, которые нельзя измерить, но которые однозначно определяют движение частиц. В 1964 году Джоном Стюартом Беллом было показано, что вне зависимости от наличия или отсутствия скрытых параметров есть некоторые вероятностные неравенства, которые можно экспериментально проверить, и в случае их нарушения можно сделать вывод об отсутствии скрытых параметров. Физиками Джоном Клаузером, Аланом Аспектом и Антоном Цайлингером были проведены эксперименты, которые показали нарушение неравенств Белла. За этот результат им была присуждена Нобелевская премия в 2022 году.

Неравенства Белла не нарушаются в классических вероятностных моделях. В частности, неравенства Белла выводятся в вероятностной логике Фагина, Хальперна и Мегиддо. Их нарушение означает, что для моделирования квантовой механики необходимы нестандартные вероятностные модели. В докладе речь пойдет о модифицированной вероятностной логике, в которой невыводимы неравенства Белла, и будет доказана теорема полноты для данной логики. Семантика данной логики задается в терминах квантовых тимов и является обобщением тим-семантики логики независимости, введенной Юко Ваананеном в 2007 году.

Сообщение основано на следующих работах:

[1] S. Abramsky and L. Hardy. Logical Bell Inequalities. Phys. Rev. A , 85(062114):1-11, 2012.
[2] T. Hyttinen, G. Paolini, J. Vaananen, Quantum team logic and Bell's inequalities. Rev. of Symb. Logic, V. 8, No. 4, 2015.
[3] J. T. Fokkens, On the reduction of quantum teams, MA thesis, University of Gothenburg.

Семинары ОФ ИМ СО РАН

Семинары ММЦ в Академгородке

Диссертационные советы SciAct1C-Кабинет сотрудника Важнейшие результаты

Новые публикации

Берестовский В. Н.
О тензорах кривизны, Риччи, Эйнштейна и Вейля Вселенной Дефриза
Сибирский математический журнал. 2025. Т. 66. № 5. С. 818-827.
DOI: 10.33048/smzh.2025.66.504

Карманова М. Б.
О липшицевых графиках на классах двухступенчатых групп Карно
Сибирский математический журнал. 2025. Т. 66. № 5. С. 882-900.
DOI: 10.33048/smzh.2025.66.509

Копылов Я. А.
Трансляционно инвариантные линейные функционалы в пространствах Орлича на локально компактных группах
Сибирский математический журнал. 2025. Т. 66. № 5. С. 901-908.
DOI: 10.33048/smzh.2025.66.510

Журтов А. Х., Лыткина Д. В., Мазуров В. Д.
О конечных группах, субспектральных конечным почти простым группам
Владикавказский математический журнал (Vladikavkaz Mathematical Journal). 2025. Т. 27. № 3. С. 68-74.
DOI: 10.46698/w4978-1776-4637-t

Нещадим М. В.
Обобщенные поля Бельтрами. Точные решения
Сибирский математический журнал. 2025. Т. 66. № 5. С. 929-936.
DOI: 10.33048/smzh.2025.66.513

Редакционная деятельность

Журналы ИМ СО РАН

Сибирский математический журнал
Сайт журнала | СМЖ в Springer | Полные тексты

Дискретный анализ и исследование операций
Сайт журнала | Полные тексты

Сибирский журнал индустриальной математики
Сайт журнала  |  Полные тексты

Journal of Applied and Industrial Mathematics
Сайт журнала

Сибирские электронные математические известия
Сайт журнала

Свежие номера журналов

Сибирский математический журнал
Том 66, 2025 г., номер 5

Дискретный анализ и исследование операций
Том 32, 2025 г., номер 2

Сибирский журнал индустриальной математики
Том 28, 2025 г., номер 2(102)

Сибирские электронные математические известия
Том 22, 2025 г., номер 1

По результатам оценки результативности научных организаций ФГБУН Институту математики им. С. Л. Соболева Сибирского отделения Российской академии наук присвоена 1 категория.

Список публикаций сотрудников ИМ СО РАН за 2014-2022 гг. (по информации Scopus)

Список публикаций сотрудников ИМ СО РАН за 2014-2022 гг. (Web of Science (Core Collection))