И. А. Медных
Спектральные инварианты циклических накрытий графов и полиномы Чебышева.
Аннотация
Цель данного направления исследований — изучение инвариантов циклических накрытий графов. При этом, накрываемый граф предполагается фиксированным, а циклическая группа накрытия имеет сколь угодно большой порядок. Классическим примером таких накрытий являются циркулянтные графы. Они накрывают одновершинный граф с заданным числом петель.
Доклад посвящен получению аналитических формул, позволяющих вычислять характеристические полиномы Лапласа. Знание такого полинома позволяет определять ряд основных спектральных инвариантов графов. Например, число отмеченных остовных лесов и деревьев, находить их асимптотическое поведение при стремлении числа вершин к бесконечности, и изучать арифметические свойства возникающих здесь числовых последовательностей. Все указанные инварианты являются спектральными — их значения определяются спектром матрицы Лапласа.
Основным инструментом для доказательства полученных результатов выступают полиномы Чебышева. Основные формулы, а также их асимптотика эффективно выражаются через корни линейных комбинаций полиномов Чебышева.