И. В. Кузнецов (Институт гидродинамики им. М. А. Лаврентьева СО РАН)
Импульсные параболические уравнения.
Архив семинара
Ар. С. Терсенов
О применении теории вязких решений для доказательства разрешимости краевых задач для нелинейных параболических уравнений (продолжение).
Аннотация
В настоящем докладе мы рассмотрим вырождающиеся параболические уравнения с градиентными нелинейностями как дивергентного, так и недивергентного вида. Используя аппарат вязких решений, нам удалось доказать существование непрерывных по Липшицу по пространственным переменным решений первой краевой задачи для анизотропных параболических уравнений с переменными показателями анизотропности в случае, когда младшие члены не удовлетворяет условию Бернштейна-Нагумо. Использование аппроксимационных методов, основанных на регуляризации, позволяющей доказать классическую разрешимость регуляризованной задачи, дает возможность получить решения максимальной гладкости, известной на сегодняшний день.
Преимущество указанного подхода заключается в том, что осуществление предельного перехода по вязким решениям регуляризованных задач, коими являются, в частности, и классические решения, возможно при более слабых априорных оценках на решения регуляризованной задачи.
Также мы рассмотрим метод суб/суперрешений, который позволяет избежать регуляризацию и получать теоремы о разрешимости, работая непосредственно с исходным уравнением.
Ар. С. Терсенов
О применении теории вязких решений для доказательства разрешимости краевых задач для нелинейных параболических уравнений.
Аннотация
В настоящем докладе мы рассмотрим вырождающиеся параболические уравнения с градиентными нелинейностями как дивергентного, так и недивергентного вида. Используя аппарат вязких решений, нам удалось доказать существование непрерывных по Липшицу по пространственным переменным решений первой краевой задачи для анизотропных параболических уравнений с переменными показателями анизотропности в случае, когда младшие члены не удовлетворяет условию Бернштейна-Нагумо. Использование аппроксимационных методов, основанных на регуляризации, позволяющей доказать классическую разрешимость регуляризованной задачи, дает возможность получить решения максимальной гладкости, известной на сегодняшний день.
Преимущество указанного подхода заключается в том, что осуществление предельного перехода по вязким решениям регуляризованных задач, коими являются, в частности, и классические решения, возможно при более слабых априорных оценках на решения регуляризованной задачи.
Также мы рассмотрим метод суб/суперрешений, который позволяет избежать регуляризацию и получать теоремы о разрешимости, работая непосредственно с исходным уравнением.
Н. А. Люлько
Асимптотическая устойчивость гиперболических систем с граничными условиями, повышающими гладкость решений.
Аннотация
В работе рассматриваются смешанные задачи для гиперболических систем первого порядка с граничными условиями отражения. Выделен класс граничных условий, для которых соответствующие линейные задачи обладают свойством повышения гладкости решений. В случае квазилинейных задач соответствующие смешанные задачи обладают свойством стабилизации всех решений к нулю за конечное время, не зависящее от начальных данных (если гиперболическая система распавшаяся), или свойством экспоненциальной устойчивости (если гиперболическая система не распавшаяся).В. Н. Белых
Асимптотика александровского $n$-поперечника компакта бесконечно гладких функций на конечном отрезке.