ИМ СО РАН
Вход для сотрудников

Семинар "Kourovka Forum"

Архив семинара

Dan Segal (All Souls College, Oxford)
Groups, rings, logic.

Abstract

In group theory, interesting statements about a group usually can't be expressed in the language of first-order logic. It turns out, however, that some groups can actually be determined by their first-order properties, or, even more strongly, by a single first-order sentence. In the latter case the group is said to be finitely axiomatizable.

I will describe some examples of this phenomenon (joint work with A. Nies and K. Tent). One family of results concerns axiomatizability of $p$-adic analytic pro-$p$ groups, within the class of all rofinite groups. Another main result is that for an adjoint simple Chevalley group of rank at least 2 and an integral domain $R$; the group $G(R)$ is bi-interpretable with the ring $R$. This means in particular that first-order properties of the group $G(R)$ correspond to first-order properties of the ring $R$. As many rings are known to be finitely axiomatizable we obtain the corresponding result for many groups; this holds in particular for every finitely generated group of the form $G(R)$.

Alex Lubotzky (Weizmann Institute and Hebrew University, Israel)
Stability and testability of permutations' equations.

Abstract

Let $A$ and $B$ be two permutations in $Sym(n)$ which "almost commute" - are they a small deformation of permutations that truly commute?

More generally, if $R$ is a system of word-equations in variables $X =(x_1, \cdots ,x_d)$ and $A =(A_1, \cdots , A_d)$ permutations which are nearly solution; are they near true solutions?

It turns out that the answer to this question depends only on the group presented by the generators $X$ and relations $R$.

This leads to the notions of "stable groups" and "testable groups". We will present a few results and methods which were developed in recent years to check whether a group is stable\testable. We will also describe the connection of this subject with property testing in computer science, with the long-standing problem of whether every group is sofic and with IRS's ( =invariant random subgroups). A number of open questions will be presented.

Список семинаров

Информация о семинаре

Информация о семинаре

Руководитель: И. Б. Горшков

Время и место проведения:
Четверг, 20.00 ч., online
Семинар проходит один раз в две-три недели.

В зависимости от часового пояса докладчика время начала семинара может меняться.

 

Dear mathematicians, we are forced to stop the work of the forum.
We will resume the workshop as soon as possible.

 

Ссылка на страницу семинара

***

Семинары ИМ СО РАН