Сангаре Бирама
Разлагаемость с развернутым фактором центральных простых алгебр с инволюцией.
Архив семинара
Желябин Виктор Николаевич, Захаров Антон Станиславович
Простые конечномерные алгебры Новикова над полем ненулевой характеристики.
Аннотация
В работе изучаются простые конечномерные алгебры Новикова над алгебраически замкнутым полем ненулевой характеристики, их связь с алгеброй умножения. Как оказалось, на алгебре правых умножений можно определить некоторое дифференцирование так, что алгебра Новикова, полученная с помощью этого дифференцирования и конструкции Гельфанда - Дорфман, изоморфна исходной алгебре. Кроме того, алгебра правых умножений - кольцо усеченных многочленов от $k$ переменных.Бокуть Леонид Аркадьевич, Колесников Павел Сергеевич
Локальность формальных распределений над правосимметрическими алгебрами.
Аннотация
Одним из ключевых утверждений в теории вертексных алгебр является лемма Донга о сохранении локальности формальных распределений с коэффициентами из алгебры Ли при конформных $n$-произведениях. Мы рассматриваем аналогичную задачу над прелиевыми алгебрами (известными также как правосимметрические алгебры). Оказалось, что для прелиевых алгебр верен только "односторонний" вариант леммы Донга, но для более узкого класса - алгебр Новикова - лемма Донга верна в полном объеме. Мы также рассмотрим вопрос сохранения локальности для формальных распределений над пре-ассоциативными (дендриформными) алгебрами.Монастырева Анна Сергеевна
Графы делителей нуля конечных колец.
Аннотация
Определение графа делителей нуля впервые было сформулировано И. Беком в 1986 г. Он полагал все элементы коммутативного кольца вершинами такого графа, а две различные вершины $x$ и $y$ соединял ребром тогда и только тогда $xy=0$. Однако настоящий интерес понятие графа делителей нуля вызвало только после того, как Д. Андерсон и Ф. Ливингстон в 1999 году предложили считать вершинами только ненулевые делители нуля коммутативного кольца. Позже это понятие было обобщено на некоммутативный и неассоциативный случаи, также появились другие виды графов делителей нуля. В настоящем докладе будут отмечены основные проблемы и задачи, направления исследований в этой области, будет сделан обзор результатов, полученных докладчиком за последние 15 лет.Губарев Всеволод Юрьевич
Обобщение конструкции алгебры кубической формы и осевые (аксиальные) алгебры монструозного типа.
Аннотация
В совместной работе с А. С. Панасенко и Ф. Машуровым (https://arxiv.org/abs/2308.16450) предложено обобщение конструкции отточенной кубической формы, которая в классическом случае даёт йорданову алгебру.
На основе соотношений, выполненных на этой конструкции, доказано, что алгебра $S(a,t,E)$ - обобщение осевой алгебры Макинроя - Шпекторова $S(a,E)$ монструозного типа - удовлетворяет тождеству $((a,b,c),d,b) + ((c,b,d),a,b) + ((d,b,a),c,b) = 0$, где $(a,b,c) = (ab)c - a(bc)$ - ассоциатор тройки элементов $a,b,c$.
Показано, что все тождества степени не выше 5, выполненные на алгебре $S(a,E)$, следуют из коммутативности и указанного тождества степени 5.
Никонов Игорь Михайлович (МГУ)
Операторы Рота-Бакстера и алгебры Хопфа.
Аннотация
В докладе будет рассмотрено несколько задач, связанных с операторами Рота-Бакстера и алгебрами Хопфа:
- конструкция групповых ОРБ произвольного веса на группах Ли
- условия, при которых ОРБ на группе является оператором Рота-Бакстера групповой алгебры
- конструкция относительного оператора Рота-Бакстера для некокоммутативных алгебр Хопфа
- конструкция семейства алгебр Хопфа с двумя образующими.
Гончаров Максим Евгеньевич
Простые конечномерные биалгебры Ли над произвольным полем.

