Басалаев С. Г.
Кратчайшие ломаные на группе Гейзенберга.
Архив семинара
Евсеев Н. А.
Соболевские кривые. Часть 3.
Аннотация
Известно, что любое метрическое пространство изометрически вкладывается в некоторое банахово пространство. Это обстоятельство, в частности, позволяет определить классы Соболева отображений, принимающих значения в метрическом пространстве. Однако, оказалось, что если использовать вложение Куратовского (самый распространённый способ линеаризации метрического пространства), то определённое с помощью него соболевское пространство не обладает ожидаемыми свойствами.Насибуллин Р. Г. (КФУ, Казань)
Анализ и геометрия одномерных и пространственных неравенств типа Харди с дополнительными слагаемыми (докторская диссертация).
Аннотация
В докладе речь пойдет об одномерных и пространственных неравенствах типа Харди с дополнительными слагаемыми, в которых участвуют геометрические характеристики областей, например, такие как объём, диаметр, внутренний радиус или максимальный конформный модуль области, а также рассмотрены их применения в теории достаточных условий однолистности, при оценке первого собственного числа $p$-лапласиана при граничных условиях Дирихле и при обосновании неравенств типа Реллиха. Будут рассмотрены усиленные дополнительными слагаемыми неравенства типа Харди в $L_1$, $L_2$ и $L_p$ случаях, весовые функции которых имеют степенные особенности, содержат тригонометрические функции, функцию Бесселя, и отдельно выделим неравенства для веса Якоби.
Для непрерывно-дифференцируемых или гладких функций с компактным носителем будут рассмотрены $L_1$, $L_2$ и $L_p$ неравенства типа Харди в пространственных областях. Неравенства в термине расстояния в среднем рассматриваются в произвольных областях, а в терминах функции расстояния до границы – в произвольных областях, в областях регулярных в смысле Дэвиса, в областях, удовлетворяющих условию конуса, в областях lambda-близких к выпуклым и в выпуклых областях. В плоских односвязных и двусвязных областях обосновываются $L_p$ конформно инвариантные неравенства.
Дубинин В. Н. (Институт прикладной математики ДВО РАН)
Вариационные формулы для конформной ёмкости.
Дубинин В. Н. (Институт прикладной математики ДВО РАН)
Граничное искажение и производная Шварца однолистной функции в круговом кольце.
Басалаев С. Г.
Задача Кеплера на группе Гейзенберга.
Аннотация
Как вращаются планеты вокруг солнца в субримановом мире? И есть ли там замкнутые орбиты? Мы исследуем геометрию траекторий и получаем некоторые их свойства. Результаты получены совместно с С. В. Агаповым.Семинар, посвященный памяти Юрия Григорьевича Решетняка (продолжение).