Г. К. Соколова
Форма Смита для сопровождающей матрицы суперпозиции полиномов и её приложения к теории узлов.
Архив семинара
А. В. Левичев
Состоит ли протон из кварков? Если MLM (=много-уровневая модель) приемлема, то в чём её новизна по сравнению с СТО (=теорией относительности)?
Аннотация
Будет дано краткое математическое описание MLM. Этот подход разрабатывается (коллективом авторов) уже почти 10 лет. В нём протон элементарен (и неразрушим). В докладе будут приведены новые данные о его волновых функциях. Осмысление MLM и её сравнение с теорией относительности позволяют сформулировать новую (по сравнению с СТО) парадигму. Часть материала доступна на https://doi.org/10.20944/preprints202202.0280.v2 (объёмный препринт) и https://www.intechopen.com/online-first/1160023 (глава в книге Протонная Терапия).К. Б. Кутбаев
Моделирование узлов и зацеплений в пространствах постоянной кривизны (кандидатская диссертация, научный руководитель – д.ф.-м.н., проф. А. Д. Медных)
Аннотация
Диссертация посвящена моделированию узлов и зацеплений в пространствах постоянной кривизны. Основная часть содержит три главы. В первой главе изучаются условия существования геометрических структур над двумостовыми узлами в пространствах постоянной кривизны и точная аналитическая формула для гиперболического объема их конических многообразий. Во второй главе представлены условия существования конического многообразия над узлом трилистник с одним мостом в евклидовом и гиперболическом пространствах и их объемы. В третьей главе моделируется зацепление $6_{1}^3$ в пространстве Лобачевского. В дополнении третьей главы представлен результат о рациональности порождающей функции для числа корневых остовных лесов в циркулянтных графах.В. Н. Берестовский, И. А. Зубарева
Геодезические и группа изометрий Вселенной Дефриза как группы Ли с левоинвариантной лоренцевой метрикой.
Аннотация
Авторы исследуют модель Вселенной Дефриза DU как группы Ли G4 с левоинвариантной лоренцевой метрикой и находят ее геодезические (они незамкнуты и могут быть неполными), все киллинговы векторные поля, структуры алгебр Ли группы Ли G4, группы изометрий G6 для DU и ее подгрупп.А. В. Грешнов
Области допустимых параметров Box-квазиметрик канонических групп Гейзенберга и их обобщений.
Аннотация
Для групп Гейзенберга и некоторых их обобщений получены геометрические описания областей допустимых параметров $q_1$, $q_2$ для их Box-квазиметрик, рассматриваемых как симметрические $(q_1,q_2)$-квазиметрики.Я. А. Копылов
Об одномерных когомологиях Орлича общих дискретных групп.
Аннотация
В 2017 г. С. Истридж рассмотрел некоторые задачи, связанные с одномерными $l_p$-когомологиями общих (не обязательно счетных) дискретных групп. В докладе некоторые результаты Истриджа обобщаются на одномерные когомологии Орлича. Приводятся некоторые условия для тривиальности нередуцированных и редуцированных когомологий Орлича дискретной группы и для совпадения этих пространств.Евсеев Н. А.
Слабые производные и метрическая дифференцируемость почти всюду.