Заседания семинаров
Водян Максим
Задача пороговой устойчивости для размещения производства и ценообразования.
Х. Голмохаммади
Связные коалиции в графах (совместная работа с С. Алихани, Д. Бахшеш, Е. Константиновой, препринт: https://arxiv.org/abs/2302.05754)
Хартовский В. Е. (Белорусский государственный университет, Минск, Республика
Беларусь)
Управляемость линейных динамических систем с последействием: качественный
анализ и построение регуляторов (по материалам докторской диссертации).
М. Э. Иванов (ИМ СО РАН)
Теорема Громова о группах полиномиального роста.
Аннотация
Известно, что для каждой группы с конечным числом порождающих определено понятие степени роста группы. Говорят, что группа имеет полиномиальный рост, если число элементов группы, длина записи которых относительно фиксированного набора порождающих не превосходит $n$, ограничено полиномиальной функцией $p(n)$.
Доклад будет посвящен разбору доказательства теоремы Громова о том, что конечно порожденная группа имеет полиномиальный рост тогда и только тогда, когда она содержит нильпотентную подгруппу конечного индекса.
П. Е. Соколов
Представления виртуальных кос и инварианты виртуальных узлов.
Илья Борисович Горшков
О существовании нормального $p$-дополнения в группах с ограничениями на множество размеров классов сопряженности (продолжение).
А. Егоров
Оценки объемов гиперболических зацеплений через число скручиваний в диаграмме.
Борис Владимирович Семисалов
О турбулентных каскадах в физических системах, описываемых нелинейным уравнением Шрёдингера.
Аннотация
Выявление механизмов возникновения и развития турбулентных течений является одной из основных открытых проблем современной физики. Применение здесь математических методов позволяет обнаружить и описать процессы передачи энергии и других инвариантов между разномасштабными возмущениями. Такие процессы называются каскадами. Они возникают в нелинейных системах и служат ключом к пониманию ранней эволюции Вселенной, причин аномального нагрева солнечной короны, зарождения «волн убийц» в Мировом океане и значительного числа других явлений.
В ходе доклада мы обсудим последние результаты аналитических и численных исследований каскадных процессов в физических системах, описываемых трёхмерным уравнением Шрёдингера с кубической нелинейностью. Это уравнение применяется в оптике, космологии, моделях сверхтекучести и конденсации Бозе-Эйнштейна. Взаимодействие волн в таких приложениях можно описать кинетическим интегро-дифференциальным уравнением. Нами исследована эволюция решения этого уравнения, рассчитаны автомодельные режимы и получены точные стационарные решения, соответствующие каскадным процессам.
Результаты получены в сотрудничестве с Y. Zhu, G. Krstulovic, С. В. Назаренко, В. Н. Гребенёвым и С. Б. Медведевым.