Заседания семинаров
Т. А. Козловская (ТГУ, Томск)
Группы косового типа.
Аннотация
Группа кос на $n$ нитях является объектом исследования комбинаторной теории групп, теории узлов и алгебраической топологии. С комбинаторной точки зрения интересно решить проблему равенства слов, проблему сопряженности, построить линейные представления групп кос и т.д. Связь с теорией узлов дают теоремы Александера и Маркова, сводящие топологическую проблему классификации узлов к ряду чисто алгебраических проблем, связанных с группами кос. В последние десятилетия были определены и активно изучаются различные обобщения кос: универсальные косы, виртуальные косы, сингулярные косы и др. В докладе мы обсудим группы, соответствующие этим косам. В частности, их алгебраические свойства, строение, а также связь с соответствующими теориями узлов.- Дмитрий Коновалов
О честном централизованном выборе сроков выполнения необязательных заданий. - Степан Утюпин
Задача об устойчивом вершинном покрытии.
Zoom
Идентификатор конференции: 863 7044 9697
Код доступа: 277023
А. Исмаилов (НИУ ВШЭ, Москва)
Изопериметрическая проблема и оценка расстояний между подмножествами выпуклых тел.
Аннотация
Среднее расстояние между двумя точками выпуклого $n$-мерного тела единичного объёма имеет порядок хотя бы $\sqrt{\frac{n}{2\pi e}}$ при достаточно больших $n$, и потому неограниченно растёт. Однако, если заменить пару точек на пару подмножеств объёма $\varepsilon > 0$, то ситуация поменяется. Для шаров единичного объёма максимальное расстояние между двумя такими подмножествами при $n \to \infty$ будет иметь асимптотику $\frac{2}{\sqrt{\pi e}}\sqrt{-\ln \varepsilon}$, для куба - между $\sqrt{\frac{2}{3}}\sqrt{-\ln \varepsilon}$ и $\frac{2}{\sqrt{\pi}}\sqrt{-\ln \varepsilon}$. Однако для симплексов наши оценки будут порядка $-\ln \varepsilon$(с точностью до константы), а для $\ell_p$ шаров единичного объёма при $p \in [1;2]$ - $(-\ln \varepsilon)^{\frac{1}{p}}$. Важную роль здесь будут играть изопериметрическая проблема: оценить площадь поверхности тела при заданном объёме, и её различные версии: изопериметрическая проблема внутри куба, на поверхности шара или для гауссовой меры в $\mathbb{R}^n$. Примечательна дискретная версия изопериметрической проблемы в решётке для многомерного куба, из которой следует аналогичный результат для Манхэттенского расстояния - $\sqrt{\frac{2}{3}}\sqrt{-\ln \varepsilon} \sqrt{n}$.В. Г. Бардаков
Многозначные группы (по лекциям В. М. Бухштабера).
Туров М. М. (Челябинский государственный университет)
Эволюционные уравнения с несколькими производными Римана-Лиувилля в линейной
части (по материалам кандидатской диссертации).
Е. И. Хлестова
Реферат статьи:
Robert E. Woodrow, “A Note on Countable Complete Theories Having Three Isomorphism
Types of Countable Models”.
Новиков М. А. (Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН)
Алгоритмы для численной оценки затухания сейсмических волн в трещиновато-пористых флюидонасыщенных средах в зависимости от связности трещин с использованием конечно-разностной аппроксимации уравнений Био в динамической постановке (по материалам кандидатской диссертации).
- Резлер Александр (реферат)
Статья: Christopher DuPre "Yet Another Quantitative Harris Theorem" (архивная версия с комментарием "12 pages, in progress and open to criticism").
Аннотация
Главным объектом изучения в статье являются харрисовы цепи Маркова. В работе продемонстрирован новый метод доказательства частного случая теоремы Кендалла. Результат затем используется в доказательстве эргодический теоремы Харриса с «эффективным контролем констант». - Мокроусова Александра (реферат)
Статья: S. Anotolyev, G. Kosenok, "Tests in contingency tables as regression tests.", Economic Letters, vol. 105, 2009, 189-192, DOI.
Аннотация
В статье показана асимптотическая эквивалентность некоторых критериев для таблиц сопряженности тесту Вальда.