ИМ СО РАН 
Вход для сотрудников

Семинары ИМ СО РАН

Заседания семинаров

18.10 ч., новый корпус НГУ, ауд. 5218

В. Г. Бардаков
Многозначные группы (по лекциям В. М. Бухштабера).

18.30 ч., фойе конференц-зала, ИМ

Туров М. М. (Челябинский государственный университет)
Эволюционные уравнения с несколькими производными Римана-Лиувилля в линейной части (по материалам кандидатской диссертации).

18.10 ч., ауд. 417, ИМ

Е. И. Хлестова
Реферат статьи:
Robert E. Woodrow, “A Note on Countable Complete Theories Having Three Isomorphism Types of Countable Models”.

18.30 ч., фойе конференц-зала, ИМ

Новиков М. А. (Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН)
Алгоритмы для численной оценки затухания сейсмических волн в  трещиновато-пористых флюидонасыщенных средах в зависимости от связности трещин с использованием конечно-разностной аппроксимации уравнений Био в  динамической постановке (по материалам кандидатской диссертации).

10.00 ч., к. 417, ИМ
  1. Резлер Александр (реферат)
    Статья: Christopher DuPre "Yet Another Quantitative Harris Theorem" (архивная версия с комментарием "12 pages, in progress and open to criticism"). 
     
    АннотацияГлавным объектом изучения в статье являются харрисовы цепи Маркова. В работе продемонстрирован новый метод доказательства частного случая теоремы Кендалла. Результат затем используется в доказательстве эргодический теоремы Харриса с «эффективным контролем констант».
  2. Мокроусова Александра (реферат)
    Статья: S. Anotolyev, G. Kosenok, "Tests in contingency tables as regression tests.", Economic Letters, vol. 105, 2009, 189-192, DOI
     
    АннотацияВ статье показана асимптотическая эквивалентность некоторых критериев для таблиц сопряженности тесту Вальда.
14.30 ч., ауд. 417, ИМ

Новиков М.А., ИНГГ СО РАН
Алгоритмы для численной оценки затухания сейсмических волн в  трещиновато-пористых флюидонасыщенных средах в зависимости от связности трещин с использованием конечно-разностной аппроксимации уравнений Био в  динамической постановке.

Научный руководитель: д.ф.-м.н. Лисица В.В. 

Аннотация

(доклад по материалам подготовленной диссертации на соискание ученой степени кандидата физико-математических наук по специальности 1.2.2 - "Математическое моделирование, численные методы и комплексы программ")

При прохождении сейсмической волны в трещиновато-пористой флюидонасыщенной среде возникают индуцированные волной флюидопотоки как между материалом трещин и вмещающей породой, так и между пересекающимися трещинами. Проявление потоков флюида в регистрируемых полях по сейсмическим характеристикам (в частности, частотно-зависимому затуханию волны) можно использовать для оценки транспортных свойств трещиноватого коллектора углеводородов и мобильности флюида в нем. Поскольку транспортные свойства трещиноватого коллектора главным образом определяются протяженными системами связных трещин, необходимо определить влияние именно глобальной связности в трещиноватых моделях на затухание сейсмической волны. Для  этого разработан и реализован алгоритм генерации дискретной системы трещин с заданной длиной перколяции, основанный на методе имитации отжига с  целевой функцией, включающей вероятность существования непрерывного пути по материалу трещин на заданное расстояние (перколяции на заданное расстояние) на всей системе трещин. На основе конечно-разностной аппроксимации системы уравнений Био в  динамической постановке на сдвинутых сетках с использованием деконволюции сигналов разработан и реализован алгоритм численной оценки сейсмического затухания в анизотропных трещиновато-пористых флюидонасыщенных средах. Результатами численных экспериментов по распространению плоской продольной волны в трещиноватых пороупругих флюидонасыщенных средах показано влияние глобальной связности трещин, физических свойств наполнителя трещин, микромасштабной анизотропии среды на частотно-зависимое затухание сейсмической волны.

16.20 ч., фойе конференц-зала, ИМ

Грешнов А. В.
Теорема Дарбу на первой группе Гейзенберга.

Аннотация

Известная теорема Дарбу говорит о том, что биективное отображение $n$-мерного пространства, переводящее любые три точки, лежащие на одной прямой, на три точки, лежащие также на одной прямой, является аффинным преобразованием.

Рассмотрим каноническую первую группу Гейзенберга $H^1$ с системой координат $(x,y,z)$. Нами установлена следующая
ТЕОРЕМА. Пусть сюръективное отображение $F=(F1,F2,F3)$ канонической первой группы Гейзенберга $H^1$ на себя переводит любые две точки, лежащие на горизонтальной прямой, на две точки, также принадлежащие некоторой горизонтальной прямой. Тогда отображение $F$ является аффинно-контактным.

Здесь аффинно-контактное преобразование – это преобразование, сохраняющее контактную структуру группы $H^1$, и отображение $f=(F1,F2)$ является аффинным отображением, не зависящим от переменной $z$. Ослабление классических условий в теореме связано с индивидуальными особенностями группы $H^1$.

18.10 ч., фойе конференц-зала ИМ

В. Г. Пузаренко, совместно с И. Ш. Калимуллиным и М. Х. Файзрахмановым
Негативные представления на допустимых множествах (продолжение).

Список семинаров

***

В Институте математики СО РАН проходят около 30 семинаров по разным направлениям математики.

На наших семинарах выступают с докладами не только научные сотрудники института, но и приглашенные докладчики со всего мира.

Семинары проводятся как очно, так и на онлайн-платформах: Zoom, Google Meet, YouTube, Jitsi.

***

Семинары ИМ СО РАН