ИМ СО РАН 
Вход для сотрудников

Семинары ИМ СО РАН

Заседания семинаров

15.00 ч., к. 417, ИМ

Совместное заседание семинаров Теория графов, Теория кодирования, Геометрическая теория функций

А. В. Косточка
Разбиения вершин графа на лес и лес с ограничениями.

16.20 ч., ауд. 417, ИМ
Meet

Автор доклада: М.В.Коробков (ИМ СО РАН & Фуданский университет, Шанхай, КНР)

Тема доклада: О плоских самоподобных решениях для системы Навье-Стокса

 

АннотацияХорошо известно, что множество решений нестационарной системы Навье-Стокса u(t,x) инвариантно относительно анизотропной группы растяжений lu(l^2t,lx). Решение называется самоподобным, если при указанном масштабировании оно переходит само в себя при всех l>0. Изначально Жан Лере предлагал рассматривать самоподобные решения с обратным ходом времени (backward self-similar solutions) для поиска сингулярных решений уравнения Навье-Стокса. Однако в классической работе [4] было показано, что таких сингулярных решений (с конечной энергией) не существует. В то же время, для трехмерного случая с обычным ходом времени (forward self-similar solutions) существование самоподобных решений с начальными данными произвольной величины было получено в известной статье [2]. Доказательство было упрощено (методом исчерпывающих областей Ж.Лере) и распространено на случай решений в полупространстве и в конусах в работе [3]. Для двумерного же случая вплоть до последнего времени ситуация была неясной: хотя существование самоподобных решений нетрудно доказать в случае малости начальных данных (см., например, [1]), вопрос для общего случая (больших начальных данных) оставался открытым. Это связано с отсутствием подходящих теорем вложения для функций с конечным интегралом Дирихле на плоскости и т.д. В настоящей работе получен результат о существования самоподобных решений уравнений Навье-Стокса в общем двумерном случае (для произвольно больших начальных данных). В доказательстве используются методы вещественного и гармонического анализа на плоскости. Работа выполнена совместно с Dallas Albritton (University of Wisconsin-Madison) и Xiao Ren (Fudan University). [1] L.Brandolese, “Fine properties of self-similar solutions of the Navier-Stokes equations”, Archive for Rational Mechanics and Analysis, 192:3 (2009), 375-401. [2] H.Jia and V.V.Sverak, “Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions”, Invent. Math., 196:1 (2014), 233-265. [3] M.Korobkov and T.-P.Tsai, “Forward self-similar solutions of the Navier-Stokes equations in the half space”, Anal. PDE, 9:8 (2016), 1811-1827. [4] J.Necas, M.Ruzicka, and V.Sverak, “On Leray’s self-similar solutions of the Navier–Stokes equations”, Acta Math., 176:2 (1996), 283-294.
14.30 ч., к. 305, ИМ
Zoom

Объединенное заседание Семинара по геометрическому анализу им. Ю. Г. Решетняка и Семинара «Геометрическая теория функций»

Аллабергенова Клара Бекиммат кизи (НГУ)
Пересечение копий и характер ветвления самоподобных дендритов (предварительная защита кандидатской диссертации в дисс. совете НГУ; научный руководитель - д.ф.-м.н. А. В. Тетенов).

15.30 ч., к. 305, ИМ
Zoom

Объединенное заседание Семинара по геометрическому анализу им. Ю. Г. Решетняка и Семинара «Геометрическая теория функций»

Дроздов Дмитрий Алексеевич (ИМ СО РАН)
Анализ на самоподобных множествах с конечным пересечением (предварительная защита кандидатской диссертации в дисс. совете НГУ; научный руководитель - д.ф.-м.н. А. В. Тетенов).

16.00 ч., Zoom

Нестерова Ангелина Витальевна
Сравнительный анализ подходов к решению обратной задачи реконструкции изображений в эмиссионной медицинской томографии.

Аннотация

Количественные оценки накопления радиофармпрепарата в патологических очагах при обследовании методом однофотонной эмиссионной компьютерной томографии (ОФЭКТ) имеют ключевое значение для определения стадии заболевания и планирования радионуклидной терапии. В данной работе выполнено сравнение двух алгоритмов реконструкции изображений: стандартного итерационного алгоритма Ordered Subset Expectation Maximization (OSEM), которым оснащено большинство ОФЭКТ-установок, и регуляризированного алгоритма реконструкции на основе байесовского подхода Maximum A Posteriori (MAP) с априорной информацией в виде функционала энтропии (MAP-Ent). Исследования проводились методом имитационного компьютерного моделирования in silico с использованием цифрового двойника вещественного фантома NEMA IEC. Оценка точности проводилась по коэффициенту восстановления, равный отношению максимального значения полученного решения в очаге к его точной величине. Результаты показали, что метод MAP-Ent:

  • обеспечивает более высокую количественную точность,
  • уменьшает влияние краевых артефактов по сравнению с OSEM,
  • позволяет контролировать артефакты за счёт выбора параметра регуляризации.

Таким образом, регуляризированный алгоритм MAP-Ent демонстрирует преимущества перед стандартным OSEM и может быть полезен для повышения точности диагностики и планирования терапии.

14.30 ч., Google Meet

Силаев Д.
A self-adaptive memeplexes robust search scheme for solving stochastic demands vehicle routing problem.
Реферат статьи 2012 из журнала International Journal of Systems Science.

16.20 ч., ауд. 220, ИМ

А. С. Герасимов (Санкт-Петербург)
Депренексификация в финитарных аналитических исчислениях для первопорядковой бесконечнозначной логики Лукасевича и полнота основанных на них инфинитарных исчислений.

Аннотация

В докладе рассматривается несколько финитарных аналитических гиперсеквенциальных исчислений для первопорядковой бесконечнозначной логики Лукасевича \L$\forall$, включая введённое Баацем (Baaz) и Меткалфом (Metcalfe) исчисление G\L$\forall$. В этих исчислениях правило сечения не допустимо и, вообще говоря, формула и её (определённая чисто синтаксически) пренексная форма не равновыводимы. Однако мы предлагаем метод депренексификации, позволяющий любой вывод любой гиперсеквенции $H$, в которой выделено вхождение любой пренексной формы любой формулы $F$, алгоритмически перестроить в вывод гиперсеквенции, полученной из $H$ заменой этого вхождения на $F$. С помощью этого метода мы устанавливаем полноту инфинитарных аналитических исчислений для \L$\forall$, основанных на вышеупомянутых финитарных исчислениях. В частности, даём первое верное доказательство полноты основанного на G\L$\forall$ инфинитарного аналитического исчисления для \L$\forall$.

Прослушивание доклада, состоявшегося на нашем семинаре 03.06.2025, не обязательно для понимания анонсируемого доклада; последний лишь опирается на основной результат первого.

16.20 ч., ауд. 5239, НГУ, Yandex Telemost

Andrea Sorbi (Siena, Italy)
Every nonzero enumeration degree contains infinitely many singleton degrees.

Список семинаров

***

В Институте математики СО РАН проходят около 30 семинаров по разным направлениям математики.

На наших семинарах выступают с докладами не только научные сотрудники института, но и приглашенные докладчики со всего мира.

Семинары проводятся как очно, так и на онлайн-платформах: Zoom, Google Meet, YouTube, Jitsi.

***

Семинары ИМ СО РАН