ИМ СО РАН 
Вход для сотрудников

Семинар по геометрическому анализу им. Ю. Г. Решетняка

Архив семинара

Я. А. Копылов
Об одномерных когомологиях Орлича общих дискретных групп.

АннотацияВ 2017 г. С. Истридж рассмотрел некоторые задачи, связанные с одномерными $l_p$-когомологиями общих (не обязательно счетных) дискретных групп. В докладе некоторые результаты Истриджа обобщаются на одномерные когомологии Орлича. Приводятся некоторые условия для тривиальности нередуцированных и редуцированных когомологий Орлича дискретной группы и для совпадения этих пространств.

Евсеев Н. А.
Слабые производные и метрическая дифференцируемость почти всюду.

АннотацияИзвестно, что липшицево отображение евклидовой области в метрическое пространство метрически дифференцируемо почти всюду. Когда метрическое пространство является банаховым пространством, двойственным к сепарабельному, метрический дифференциал имеет линейное представление – *-слабый дифференциал. Но для произвольного метрического или банахова пространства липшицево отображение не обязательно *-слабо дифференцируемо. Мы предлагаем подход, основанный на слабых *-слабых производных. В частности, он обеспечивает линейное представление, то есть возможность вычислить значение метрического дифференциала как норму некоторого линейного оператора.

Евсеев Н. А.
О статье Ю. Г. Решетняка 1997 года

АннотацияУказанная работа — одна из самых цитируемых работ Решетняка. Подход к определению соболевских отображений, принимающих значения в метрическом пространстве X, оказался достаточно удобным для использования и получения результатов. В докладе мы обсудим несколько вопросов, связанных с данной статьёй. Например, является ли метрическое пространство Соболева полным? Насколько существенно условие сепарабельности X?

Романовский Н. Н.
Обобщение пространств Соболева. Теоремы вложения.

Коробков М. В.
О задаче Ладыженской-Лере для течения вязкой несжимаемой жидкости в системе труб и каналов.

АннотацияИсследуется классическая задача Ладыженской - Лере о стационарном движении вязкой несжимаемой жидкости в системе бесконечных каналов с искажениями формы при граничных условиях Дирихле. В отличие от многих предыдущих работ, область не считается односвязной, а потоки не считаются малыми. В этой очень общей постановке мы доказываем, что метод "исчерпывающих областей" Ж. Лере всегда генерирует решение с интегралом Дирихле, равномерно ограниченным в каждой ограниченной подобласти. В случае малости потоков, это решение на бесконечности будет стремиться ко классическому течению Пуазейля или Куэтта. (Предельное поведение построенного решения в случае больших потоков остается открытым вопросом.) Это обобщение классического результата Ладыженской - Солонникова, доказанного при дополнительном предположении о нулевых граничных условиях. Результат получен совместно с Xiao Ren (Peking University) и Gianmarco Sperone (Politecnico di Milano).

Мерчела Вассим (Университет Мустафы Стамбули, Маскара, Алжир)
Теоремы о возмущениях накрывающих отображений обобщенных метрических пространств в исследовании дифференциальных и интегральных уравнений.
 

АннотацияВ докладе покажем утверждения об уравнениях с накрывающими отображениями в пространствах с обобщенными метриками, на их основе исследованы задача Коши для неявных ОДУ, а также неявное интегральное уравнение.

Левичев А.В.
О траектории видимого Солнца (в контексте теории относительности).

Аннотация

А. В. Левичев расскажет о содержании подготавливаемой (в соавторстве с Ю. Ю. Клевцовой, М. В. Нещадимом, А. Ю. Пальяновым) статьи. Смотрим в окно - там Солнце "движется". Считаем его точкой. Вводим оси $х, у$ - соответствующие "части рамы окна". В контексте специальной теории относительности, т. е. с применением параллельного переноса Ферми-Уолкера вдоль мировой линии "точечного" наблюдателя на поверхности Земли, найдены уравнения $х(t), у(t)$ таких траекторий. Тем самым, был реализован подход, намеченный в [1, Секция 6]. По-видимому (судя по графику), совокупность всех предельных точек одной такой траектории $T$ – это замкнутая область между двумя овалами (их уравнения пока не найдены). В ньютоновском пределе, т. е. при устремлении скорости света к бесконечности, получаем совпадение с астрометрией, согласно которой «видимые суточные движения светил совершаются по суточным параллелям». Авторы надеются на сотрудничество, так как: 1) не на все свои вопросы мы нашли ответы; 2) по данной теме докладчик сформулирует более общие задачи.

[1] О применении переноса Ферми-Уолкера в звёздных наблюдениях: общий подход и солнечная конкретика. Левичев А. В., Нещадим М. В., Пальянов А. Ю. / В Материалах IX Международной конференции “Знания – Онтологии – Теории” (ЗОНТ-2023), 2–6 октября 2023 г., Новосибирск. Под ред. Д. Е. Пальчунова. Новосибирск: Изд-во Института математики им. С. Л. Соболева СО РАН, 2023. С. 195-201.

Список семинаров

Информация о семинаре

Информация о семинаре

Руководитель:
д.ф.-м.н., проф. С. К. Водопьянов

Время и место проведения:
Вторник, 16.00 ч., фойе конф.зала, ИМ

***

Семинары ИМ СО РАН