Насибуллин Р. Г. (КФУ, Казань)
Анализ и геометрия одномерных и пространственных неравенств типа Харди с дополнительными слагаемыми (докторская диссертация).
Аннотация
В докладе речь пойдет об одномерных и пространственных неравенствах типа Харди с дополнительными слагаемыми, в которых участвуют геометрические характеристики областей, например, такие как объём, диаметр, внутренний радиус или максимальный конформный модуль области, а также рассмотрены их применения в теории достаточных условий однолистности, при оценке первого собственного числа $p$-лапласиана при граничных условиях Дирихле и при обосновании неравенств типа Реллиха. Будут рассмотрены усиленные дополнительными слагаемыми неравенства типа Харди в $L_1$, $L_2$ и $L_p$ случаях, весовые функции которых имеют степенные особенности, содержат тригонометрические функции, функцию Бесселя, и отдельно выделим неравенства для веса Якоби.
Для непрерывно-дифференцируемых или гладких функций с компактным носителем будут рассмотрены $L_1$, $L_2$ и $L_p$ неравенства типа Харди в пространственных областях. Неравенства в термине расстояния в среднем рассматриваются в произвольных областях, а в терминах функции расстояния до границы – в произвольных областях, в областях регулярных в смысле Дэвиса, в областях, удовлетворяющих условию конуса, в областях lambda-близких к выпуклым и в выпуклых областях. В плоских односвязных и двусвязных областях обосновываются $L_p$ конформно инвариантные неравенства.