Заседания семинаров
Zoom
Идентификатор конференции: 912 824 7824
Код доступа: 31415926
А.К. Цих(СФУ, Красноярск)
Гипергеометрия и Фейнмановские интегралы.
Аннотация
Гипергеометрические функции играют важную роль математике (и ее приложениях) уже более двух веков. Однако, наиболее удачный подход к гипергеометрической концепции в многомерии был реализован в 90-ых годах прошлого века в статьях Гельфанда и его соавторов. В докладе будет изложена роль дискриминантов в теории геометрических функций. Такими функциями и представляются Фейнмановские интегралы в рамках квантовой теории поля.Идентификатор конференции: 771 1165 6729
Код доступа: 599586
- Фёдор Анатольевич Дудкин
Обобщенные группы Баумслага–Солитера, универсально эквивалентные древесным.
- Андрей Сергеевич Морозов
Об отображениях с коперечислимыми графиками.
М. В. Нещадим реферирует статью:
D. Joyce, A classifying invariant of knots, the knot quandle. Journal of Pure and Applied Algebra, 23 (1982) 37-65.
М. Н. Гаськова
Реферат статьи:
M. Harrison-Trainor, A. Melnikov, A. Montalban "Independence in Computable Algebra" (продолжение).
Conference ID: 884 051 9805
Password: LG6EY2
Д. Ж. Акпан (МГУ, Москва)
Дифференциальные особенности операторов Нийенхейса и их приложения к геодезически эквивалентным метрикам.
Аннотация
В докладе будем рассматривать задачу описания операторов Нийенхейса в окрестности дифференциально вырожденных точек. Если задан оператор Нийенхейса, у которого ранг дифференциала характеристического отображения инвариантов (коэффициентов характеристического многочлена) максимален, то такие операторы описаны полностью в работах А. Болсинова, В. Матвеева, А. Коняева. Мы будем обсуждать случай, когда ранг дифференциала характеристического отображения падает в окрестности некоторой точки. Вторая часть доклада будет посвящена связи операторов Нийенхейса и геодезически эквивалентных метрик.Демиденко Г. В.
Экспоненциальная дихотомия для дифференциальных и разностных уравнений.
О. А. Ошмарина
Определитель простых тета-кривых (продолжение).
Антон Тарасенко
Разбор книги Александра Гасникова "Algorithmic Stochastic Convex Optimization".