ИМ СО РАН 
Вход для сотрудников

Cеминар «Прикладная статистика»

Архив семинара

А. В. Булинский (МГУ имени М. В. Ломоносова)
Методы выбора значимых факторов, влияющих на изучаемый случайный отклик.

АннотацияРассматриваются широко применяемые алгоритмы выбора в определенном смысле значимых факторов, основанные на понятиях теории информации. Также обсуждаются некоторые методы анализа данных, не вовлекающие информацию взаимодействия для изучаемой стохастической модели.

В. В. Ульянов (МГУ и НИУ ВШЭ)
Статистические выводы, основанные на рандомизированных тестовых статистиках.

Аннотация

В докладе будет показано, что дополнительная рандомизация может улучшить скорость сходимости распределений тестовых статистик к предельным законам. Это позволяет точнее вычислять критические уровни критериев и делать более достоверные статистические выводы. Подход основан на многомерной центральной предельной теореме для взвешенных сумм. Мы демонстрируем наш метод на семействе фи-дивергентных статистик и доказываем, что с высокой вероятностью относительно дополнительной рандомизации распределение соответствующей рандомизированной статистики сходится в метрике Колмогорова к предельному Хи-квадрат распределению со скоростью $O(1/n)$ (с точностью до логарифмического множителя), где $n$- объем выборки.

Доклад основан на совместных результатах автора с З. Ассылбековым, С. Айвазяном, Н. Пучкиным и В. Зубовым.

Н. С. Аркашов
О моделировании стационарных последовательностей случайных величин.

АннотацияВ докладе обсуждается метод моделирования стационарных последовательностей наблюдений, реализуемый, вообще говоря, нелинейным преобразованием гауссовского шума. Формулируются предельные теоремы в метрическом пространстве D[0,1] для нормированных процессов частичных сумм последовательностей, полученных в результате упомянутого преобразования гауссовского шума. Указанный метод применяется для моделирования процесса распределения служебных слов в текстах художественных произведений.

В. Б. Бериков
Об одном подходе к решению задач машинного обучения со «слабо» размеченными данными.

АннотацияВ докладе рассматриваются задачи машинного обучения в случае, когда разметка является неполной и/или неточной (weakly supervised learning) и имеет большой объем. Эти задачи возникают в случае, когда полная разметка данных требует значительных затрат. В то же время, неразмеченная и «слабо» размеченная часть выборки может дать дополнительную информацию о структуре данных, повысив тем самым качество прогноза. Обсуждается подход, основанный на методе регуляризации многообразия с применением малоранговых матричных операций и ансамблевых метрик сходства. Демонстрируются примеры использования развиваемого подхода.

В. А. Топчий, Н. В. Перцев (ОФ ИМ СО РАН)
Цепи массового обслуживания с бесконечным числом обслуживающих каналов на графе.

Аннотация

При исследовании живых систем появляются модели, обладающие следующей спецификой: 

  1. имеется несколько узлов с совокупностью частиц, развивающихся на основе модели Эрланга-Севастьянова (обобщение процессов рождения и гибели), в которой распределение продолжительности жизни частиц произвольно;
  2. узлы связаны направленными каналами, по которым осуществляются переходы частиц между узлами.

Указанную специфику можно интерпретировать как эволюцию частиц на ориентированном графе. Переходы частиц в каналы регулируются независимыми случайными механизмами. В каналах происходит только перемещение частиц с ограничениями на время их пребывания и возможностью гибели. На всех элементах графа распределения характеристик эволюции частиц различны. Для приложений часто важна неоднородность характеристик эволюции частиц по времени. В этом случае анализ систем возможен только с помощью имитационного моделирования.

В докладе рассмотрен частный случай модели, где в каждый узел входит внешний пуассоновский поток частиц. Далее частицы могут либо гибнуть, либо случайным образом переходить в некоторые узлы ориентированного графа по соответствующим каналам. Эволюция частиц на каждом элементе графа определяется распределением двух независимых случайных величин: допустимой продолжительностью жизни частицы и ее допустимым временем пребывания на этом элементе. Реализуется событие, появившееся раньше.

Приведенную модель удобно исследовать в терминах теории массового обслуживания. Узловое свойство модели состоит в том, что при входящем пуассоновском потоке заявок в узел при любом распределении времени пребывания заявки в нем, их общая численность будет также пуассоновской. Для выбранной модели описаны предельные интенсивности входящих потоков и распределения численности частиц на всех элементах графа для произвольных распределений допустимых времен пребывания частиц на элементах графа и их продолжительности жизни. В ряде частных случаев все входящие потоки будут пуассоновскими с явно выписанными интенсивностями, а распределения численности частиц на элементах графа будут пуассоновскими с параметрами, заданными в явном виде для любого момента времени.

С. Е. Хрущев
Методы выравнивания групп и анализ выживаемости в медицинских исследованиях.

АннотацияВ медицинских исследованиях для обеспечения корректного сравнения выживаемости в двух или более группах пациентов возникает задача выравнивания этих групп по так называемым вмешивающимся переменным, которые могут существенным образом оказывать влияние на результаты анализа выживаемости. В докладе будут рассмотрены некоторые известные методы решения этой задачи, их преимущества и недостатки. Применяя данные методы, будет проведен анализ выживаемости на конкретных примерах реальных групп пациентов.

А. А. Быстров (НГУ), Н. В. Володько
Экспоненциальные неравенства для распределения числа циклов в обобщенном случайном графе.

АннотацияДоклад посвящен вероятностным неравенствам концентрации типа неравенства Хёфдинга для числа циклов определенной длины в обобщенном $n$-вершинном случайном графе. Рассматривается модель, в которой каждая вершина имеет вес, причем веса вершин являются независимыми одинаково распределенными случайными величинами. Предполагается, что каждое ребро возникает в графе независимо от других ребер с вероятностью, зависящей только от весов двух соединяемых вершин. Для хвостов распределения центрированного и нормированного числа циклов фиксированной длины в таком графе получены экспоненциальные оценки, которые являются равномерными по $n$ с явно вычисленными константами.

Список семинаров

Информация о семинаре

Информация о семинаре

Руководители:
П. С. Рузанкин, Ю. Ю. Линке, И. С. Борисов

Время и место проведения:
Понедельник, 15.00 ч.,  ZOOM

Ссылка на страницу семинара

***

Семинары ИМ СО РАН