П. С. Рузанкин
Быстрый состоятельный сеточный алгоритм кластеризации.
Архив семинара
Совместное заседание семинара «Прикладная статистика» и Семинара лаборатории ИИ-технологий математического моделирования биологических, социально-экономических и экологических процессов
А. В. Неверов
Применение регрессии на основе гауссовских процессов.
Аннотация
В докладе будет рассмотрена практическая сторона применения регрессионных моделей на основе гауссовских процессов. Этот метод является непараметрическим, а вид итоговой регрессионной функции определяется видом ядра, характеризующего расстояние между функциями. Это даёт большую гибкость по сравнению с классическими методами за счёт большей вычислительной сложности алгоритма. В докладе будет показано, как можно воспроизводить этим методом классические регрессионные методы, а также их модификации и комбинации. В заключение будет рассмотрена концепция автоматического адаптивного подбора ядра регрессии в зависимости от исходной выборки и практические примеры применения.В. А. Топчий, А. В. Еремеев
Пошаговая асимптотика в генетических алгоритмах, основанная на распределении Гумбеля.
Аннотация
Отличительной особенностью эволюционных алгоритмов (ЭА) для решения задач оптимизации является имитация случайного процесса эволюционной адаптации биологической популяции к условиям окружающей среды. Особи соответствуют пробным точкам в пространстве решений задачи оптимизации, а приспособленность особей определяется значениями целевой функции. Построение новых пробных точек в ЭА осуществляется посредством операторов мутации и кроссинговера. При использовании кроссинговера алгоритмы принято называть генетическими. Множество бинарных векторов называется популяцией, а его элементы - особями. Первичные исследования новых ЭА традиционно проводятся для onemax весовой функции $f(x)=|x|$. Это одноэкстремальная задача. В генетическом алгоритме $(1+(\lambda,\lambda))$ из работы (Doerr, Doerr, Ebel, 2015) единственная родительская особь порождает $\lambda=\lambda(n)\to\infty $ потомков независимо друг от друга на случайном расстоянии Хэмминга $\ell$ от родителя, а затем одна из них с максимальным весом кроссинговером (каждый его бит сохраняется с вероятностью $\lambda^{-1}$, иначе берётся бит родителя) с родителем порождает $\lambda$ потомков независимо друг от друга, из которых выбирается наилучший. Если она не хуже родителя, то становится новым родителем и независимо от истории запускается новый цикл до попадания в оптимальный вектор, иначе родитель не изменяется и начинается новый цикл. Одна из проблем: найти оценки для среднего числа вычислений целевой функции. Традиционно описывается вероятность увеличения нормы родителя за один цикл и в их терминах производятся требуемые оценки. Мы предлагаем учесть величину приращения нормы Хемминга для нового родителя на основе предельных теорем, включая сходимость к распределению Гумбеля для максимума случайных величин. Это позволяет усилить некоторые имевшиеся ранее результаты.Н. С. Аркашов
Моментные неравенства для суммы взвешенных независимых одинаково распределенных случайных величин.
Аннотация
Получены верхние и нижние оценки для моментов бесконечной суммы взвешенных независимых одинаково распределенных случайных величин. Представленные неравенства обобщают известные неравенства Хинчина.Ю. Ю. Линке
О точности равномерной аппроксимации универсальными ядерными оценками гладких регрессионных функций.
Аннотация
В докладе речь пойдет об универсальных локально-постоянных ядерных оценках в классической задаче непараметрической регрессии, состоящей в восстановлении регрессионной функций по наблюдениям ее зашумленных значений в некотором известном наборе детерминированных или случайных точек. Ранее эти ядерные оценки исследовались лишь в случае непрерывной регрессионной функции. В докладе будет показано, что при дополнительном условии гладкости регрессионной функции точность равномерной аппроксимации может быть улучшена.И. С. Борисов, М. Ж. Жетписбаев
Пуассоновская аппроксимация распределений статистик хи-квадрат.
Аннотация
В работе обсуждается проблема пуассоновской аппроксимации распределений статистик хи-квадрат в случае, когда число групп и размер выборки одновременно стремятся к бесконечности.А. Ю. Зайцев (ПОМИ РАН)
О распределениях сумм независимых слагаемых.

