Заседания семинаров
Сабельфельд К. К.
Непрерывные и дискретные стохастические численные методы решения многомерных краевых задач и некоторые приложения.
Г. Ольховиков (Рурский университет, Бохум)
Conditionals in some constructive logics.
Аннотация
In this talk, we present logics of would- and might-conditionals conservatively extending two constructive propositional logics: the intuitionistic logic $IL$ and the paraconsistent variant $N4$ of Nelson’s logic of strong negation. Our motivation for the correctness of the proposed systems is grounded upon the faithfulness of the respective standard translations of these logics into the first-order versions of $IL$ and $N4$.
We relate our work to the pre-existing work on modal extensions of $IL$ and $N4$ and show, in particular, how our conditional logics induce the basic modal logics $IK$ [1] and $FSK^d$ [2] as their modal companions.
References
[1] G. Fischer-Servi. Semantics for a class of intuitionistic modal calculi. In: M. L. Dalla Chiara, editor, Italian Studies in the Philosophy of Science. Studies in the Philosophy of Science, Vol. 47, 59–72 Dordrecht: Springer. (1981)
[2] S. Odintsov, H. Wansing. Constructive predicate logic and constructive modal logic. Formal duality versus semantical duality. In: V. Hendricks et al., eds, First-Order Logic Revisited, 269–286, Berlin, Logos. (2004).
Sigrid Knust (Uni of Osnabrück)
Synchronous flow shop scheduling problems.
В. С. Задворнов
Брэйсы с циклическим коммутантом аддитивной группы.
Николай Семенович Романовский
Ранг Морли определимого множества над делимой жёсткой группой.
А. Ю. Веснин
О группах отражений идеальных гиперболических многоугольников.