А. С. Герасимов (Санкт-Петербург)
Первопорядковая бесконечнозначная логика Лукасевича: исчисления для поиска вывода и полнота инфинитарных аналитических исчислений для пренексных предложений.
Аннотация
Первопорядковая бесконечнозначная логика Лукасевича относится к математическим нечётким логикам и служит для формализации приближённых рассуждений. Множество всех общезначимых предложений (и множество всех общезначимых пренексных предложений) этой логики неперечислимо; поэтому для неё не существует полного исчисления с рекурсивным множеством аксиом и конечным числом рекурсивных правил вывода. В докладе мы докажем полноту нескольких инфинитарных аналитических гиперсеквенциальных исчислений для пренексных предложений данной логики с помощью построений, полученных при разработке ориентированных на поиск вывода исчислений для рассматриваемой логики.
Доклад основан на статьях:
[1] A. S. Gerasimov, "Repetition-free and infinitary analytic calculi for  first-order rational Pavelka logic", Siberian Electronic Mathematical Reports, Vol. 17, 2020, pp. 1869-1899, https://doi.org/10.33048/semi.2020.17.127;
[2] A. S. Gerasimov, "Comparing calculi for first-order infinite-valued Lukasiewicz logic and first-order rational Pavelka logic", Logic and Logical Philosophy, Vol. 32, No. 2, 2022, pp. 269-318, https://doi.org/10.12775/LLP.2022.030;
а также на некоторых неопубликованных результатах докладчика.

