Вход для сотрудников

Семинары ИМ СО РАН

Заседания семинаров

14.30 ч., к. 417, ИМ
Zoom

Д. Д. Нигомедьянов (ПОМИ, СПбГУ, С.-Петербург)
Разложение Коджимы одного класса гиперболических 3-многообразий с вполне геодезическим краем.

АннотацияКоджима доказал, что всякое гиперболическое многообразие с вполне геодезическим краем допускает каноническое разложение на выпуклые гиперболические многогранники. В размерности три это разложение двойственно катлокусу края многообразия и играет ключевую роль в табулировании гиперболических 3-многообразий. В докладе будет описано разложение Коджимы гиперболических 3-многообразий с вполне геодезическим краем, триангуляционная сложность которых равняется первому числу Бетти этих многообразий с коэффициентами в группе Z/2Z, а  также будет приведена формула Тильтов, устанавливающая связь между геометрической триангуляцией гиперболического многообразия с вполне геодезическим краем и его разложением Кождимы.
16.20 ч., к. 344, ИМ

День открытых проблем (1600-е заседание).

14.30 ч., ауд. 344, ИМ

Августинович Сергей Владимирович
Экстремальные эйлеровы ориентации циркулянтных графов.

14.30 ч., Яндекс Телемост

Нгуен Дык Минь
Математические модели и алгоритмы решения задач о покрытии и упаковке для поверхностей вращения.

Аннотация Научная специальность 1.2.2. Математическое моделирование, численные методы и комплексы программ
Диссертация на соискание ученой степени кандидата физико-математических наук
Научный руководитель: доктор физико-математических наук, профессор Казаков Александр Леонидович
18.10 ч., новый корпус НГУ, ауд. 5218

П. П. Соколов
Вложение матричной алгебры в элементарно градуированную алгебру.

16.30 ч., к. 417, ИМ

Д. О. Ревин
О симплектических группах и точных оценках ширины Бэра-Сузуки (продолжение).

14.00 ч., к. 305, ИМ; Online

И. Ю. Полехин (МИАН, Москва)
Топологический подход к методу усреднения Н. Н. Боголюбова.

АннотацияВ теории усреднения ОДУ, разработанной Н. Н. Боголюбовым, принято разделять два типа утверждений: теоремы об усреднении на конечном интервале времени (когда решения исходной и усредненной систем близки на большом, но конечном интервале времени) и теоремы об усреднении на бесконечном интервале. Мы расскажем, как теоремы об усреднении на бесконечном интервале времени могут быть получены из теорем об усреднении на конечном интервале времени. В частности, мы продемонстрируем, какие топологические соображения, касающиеся поведения векторного поля усредненной системы, обуславливают возможность перехода от результатов, верных на конечном интервале, к результатам на бесконечном интервале. Предложенный подход позволяет существенно обобщить классические результаты на случай вырожденных (в алгебраическом смысле) систем. Также при использовании топологических соображений становится ясно различие требований на матрицу линеаризации в случае периодической и почти периодической по времени правой части: для усреднения в случае почти периодической правой части требуется не только невырожденность, но и гиперболичность. В качестве иллюстрации подхода будет рассмотрена механическая система - маятник Капицы-Уитни.
16.00 ч., Zoom

Новиков Никита Сергеевич
Прямой метод решения обратной задачи для гиперболического уравнения.

АннотацияСтатья посвящена применению подхода Гельфанда-Левитана к решению обратной задачи определения плотности и скорости среды по граничным данным. Метод позволяет свести нелинейную задачу к линейным интегральным уравнениям. В докладе будут рассмотрены основные особенности подхода и численные алгоритмы решения задачи.

Список семинаров

***

В Институте математики СО РАН проходят около 30 семинаров по разным направлениям математики.

На наших семинарах выступают с докладами не только научные сотрудники института, но и приглашенные докладчики со всего мира.

Семинары проводятся как очно, так и на онлайн-платформах: Zoom, Google Meet, YouTube, Jitsi.

***

Семинары ИМ СО РАН