ИМ СО РАН
Вход для сотрудников

Семинары ИМ СО РАН

Заседания семинаров

16.30 ч., к. 417, ИМ

Иван Бондаренко (н.с. лаборатории прикладных цифровых технологий ММФ НГУ)
Нейронные сети и математика: состояние и перспективы современной теории нейросетей.

АннотацияНе так давно произошло очередное вручение Нобелевской премии, и лауреатами премии по физике в этом году стали Джон Хопфилд и Джеффри Хинтон за достижения в области искусственных нейронных сетей. Причём здесь физика? Кажется, нейросети - это математика. Или не математика? Вообще, чего больше в современной теории нейронных сетей: математики или естественных наук? И что является обоснованием истинности в этой теории: цепочка умозаключений, идущая от бесспорных посылок, или же эксперимент с корректным дизайном? В своём рассказе я попробую дать свой ответ на эти вопросы, обозначить современное состояние дел в области нейронных сетей и перспективные направления математических исследований, позволяющих развить наше научное понимание нейросетевого метода.
16.20 ч., ауд. 115, ИМ

Л. Л. Максимова, В. Ф. Юн (ИМ СО РАН, Новосибирск)
Пример логик с интерполяционным свойством CIP, сумма которых не имеет CIP.

Аннотация

Мы рассматриваем интерполяционные свойства в расширениях минимальной логики $J$. Из описания суперинтуиционистских, негативных логик с интерполяционным свойством Крейга CIP следует, что сумма таких логик, обладающих свойством CIP, тоже имеет CIP. Для $J$-логик это не так.

Первый пример логик с CIP, сумма которых не имеет этого свойства, найден в [Л. Л. Максимова. Метод доказательства интерполяции в расширениях минимальной логики. Алгебра и логика, 46, № 5 (2007), 627–648] и использовал семантические методы. В [Л. Л. Максимова, В. Ф. Юн. Расширение минимальной логики и проблема интерполяции. Сибирский мат. журнал. 59, no. 4 (2018), 863–878] приведены еще несколько примеров, при этом строились алгебраические доказательства.

Мы докажем, используя алгебраические методы, что сумма логик (Int*NC), OdF с CIP не обладает интерполяционным свойством Крейга, и даже ограниченным интерполяционным свойством IPR.

16.30 ч., Yandex Telemost

В. Ю. Губарев
Операторы Роты - Бакстера веса 0 на алгебре матриц 3-го порядка, не содержащие в ядре единицу.

АннотацияПолучена классификация операторов Роты - Бакстера $R$ веса 0 на алгебре $M3(F)$ таких, что $R(1) \ne 0$. Для решения данной задачи применялись как сопряжение с подходящими автоморфизмами матричных подалгебр, так и вычисления, проведённые в системе компьютерной алгебры Singular. Помимо этого описаны операторы Роты - Бакстера $R$ веса 0 на алгебре верхнетреугольных матриц 3-го порядка (arXiv:2404.00289).
18.10 ч., ауд. 5273, НГУ

Болдырев И. А.
О проектах "Фреймворк СИГМА" и "Платформа АРХИ - управление строительным проектом".

10.50 ч., к.213, ИМ СО РАН

Нозимов Д. З. (НГУ)
Filzah Mohamed Othman, Nor Aiza Mohd-Zamil, Siti Zaleha Abdul Rasid, Amin Vakilbashi, Mozhdeh Mokhber
Data Envelopment Analysis: A Tool of Measuring Efficiency in Banking Sector (International Journal of Economics and Financial Issues, 2016, v.6, N. 3).

18.00 ч.
Для получения ссылки на подключение необходимо заранее написать организаторам на адрес: tvims.nsu@gmail.com

Наталия Смородина
Одна предельная теорема для одномерных ветвящихся винеровских процессов с точечными источниками ветвления.

АннотацияРассматривается ветвящийся одномерный винеровский процесс, интенсивность деления которого есть линейная комбинация дельта-функций минус некоторая положительная константа. Строится соответствующая этому процессу полугруппа операторов и выписываются аналоги прямого и обратного уравнений Колмогорова. Доказывается предельная теорема.

Список семинаров

***

В Институте математики СО РАН проходят около 30 семинаров по разным направлениям математики.

На наших семинарах выступают с докладами не только научные сотрудники института, но и приглашенные докладчики со всего мира.

Семинары проводятся как очно, так и на онлайн-платформах: Zoom, Google Meet, YouTube, Jitsi.

***

Семинары ИМ СО РАН