Заседания семинаров
A. В. Войтишек (ИВМиМГ СО РАН)
Экономичные компьютерные функциональные алгоритмы приближения вероятностных плотностей по заданной выборке.
Аннотация
В докладе будет рассмотрена следующая задача: по заданной выборке построить численное (компьютерное) функциональное приближение неизвестной плотности на компактной области распределения случайной величины (вектора) с заданным уровнем погрешности и с наименьшими вычислительными затратами. Для решения этой задачи предлагается использовать классические вычислительные алгоритмы (с построением аппроксимационных сеток и связанных с ними устойчивых функциональных базисов), где для приближений плотности в узлах сетки используются известные ядерные и/или проекционные «точечные» непараметрические оценки плотности. Доклад в значительной степени уточняет некоторые совместные результаты автора с Т. Е. Булгаковой (СУНЦ НГУ), изложенные в [1]. В частности, будет показано, что подробно исследованный в [1] алгоритм построения многомерного аналога полигона частот является одновременно частным случаем как вычислительного ядерного алгоритма (для специальной кусочно-постоянной ядерной функции, связанной с вычислительной сеткой), так и вычислительного проекционного алгоритма (для специальной системы ортонормированных кусочно-постоянных вспомогательных функций, связанной с вычислительной сеткой) для компьютерного приближения неизвестной плотности распределения случайной величины по заданной выборке. Будут приведены cоображения теории условной оптимизации рассматриваемых функциональных алгоритмов (основы этой теории описаны, например, в [1]), связанные с согласованным выбором количества узлов аппроксимационной сетки и необходимого подмножества выборочных значений для достижения заданного уровня погрешности за минимальное время вычислений, показывающие целесообразность использования на практике именно этого частного случая – многомерного аналога полигона частот.Zoom
Идентификатор конференции: 863 7044 9697
Код доступа: 277023
А. Исмаилов (НИУ ВШЭ, Москва)
Изопериметрическая проблема и оценка расстояний между подмножествами выпуклых тел.
Аннотация
Среднее расстояние между двумя точками выпуклого $n$-мерного тела единичного объёма имеет порядок хотя бы $\sqrt{\frac{n}{2\pi e}}$ при достаточно больших $n$, и потому неограниченно растёт. Однако, если заменить пару точек на пару подмножеств объёма $\varepsilon > 0$, то ситуация поменяется. Для шаров единичного объёма максимальное расстояние между двумя такими подмножествами при $n \to \infty$ будет иметь асимптотику $\frac{2}{\sqrt{\pi e}}\sqrt{-\ln \varepsilon}$, для куба - между $\sqrt{\frac{2}{3}}\sqrt{-\ln \varepsilon}$ и $\frac{2}{\sqrt{\pi}}\sqrt{-\ln \varepsilon}$. Однако для симплексов наши оценки будут порядка $-\ln \varepsilon$(с точностью до константы), а для $\ell_p$ шаров единичного объёма при $p \in [1;2]$ - $(-\ln \varepsilon)^{\frac{1}{p}}$. Важную роль здесь будут играть изопериметрическая проблема: оценить площадь поверхности тела при заданном объёме, и её различные версии: изопериметрическая проблема внутри куба, на поверхности шара или для гауссовой меры в $\mathbb{R}^n$. Примечательна дискретная версия изопериметрической проблемы в решётке для многомерного куба, из которой следует аналогичный результат для Манхэттенского расстояния - $\sqrt{\frac{2}{3}}\sqrt{-\ln \varepsilon} \sqrt{n}$.В. Г. Бардаков
Многозначные группы (по лекциям В. М. Бухштабера).
Туров М. М. (Челябинский государственный университет)
Эволюционные уравнения с несколькими производными Римана-Лиувилля в линейной
части (по материалам кандидатской диссертации).
Е. И. Хлестова
Реферат статьи:
Robert E. Woodrow, “A Note on Countable Complete Theories Having Three Isomorphism
Types of Countable Models”.
Новиков М. А. (Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН)
Алгоритмы для численной оценки затухания сейсмических волн в трещиновато-пористых флюидонасыщенных средах в зависимости от связности трещин с использованием конечно-разностной аппроксимации уравнений Био в динамической постановке (по материалам кандидатской диссертации).
- Резлер Александр (реферат)
Статья: Christopher DuPre "Yet Another Quantitative Harris Theorem" (архивная версия с комментарием "12 pages, in progress and open to criticism").
Аннотация
Главным объектом изучения в статье являются харрисовы цепи Маркова. В работе продемонстрирован новый метод доказательства частного случая теоремы Кендалла. Результат затем используется в доказательстве эргодический теоремы Харриса с «эффективным контролем констант». - Мокроусова Александра (реферат)
Статья: S. Anotolyev, G. Kosenok, "Tests in contingency tables as regression tests.", Economic Letters, vol. 105, 2009, 189-192, DOI.
Аннотация
В статье показана асимптотическая эквивалентность некоторых критериев для таблиц сопряженности тесту Вальда.
Новиков М.А., ИНГГ СО РАН
Алгоритмы для численной оценки затухания сейсмических волн в трещиновато-пористых флюидонасыщенных средах в зависимости от связности трещин с использованием конечно-разностной аппроксимации уравнений Био в динамической постановке.
Научный руководитель: д.ф.-м.н. Лисица В.В.
Аннотация
(доклад по материалам подготовленной диссертации на соискание ученой степени кандидата физико-математических наук по специальности 1.2.2 - "Математическое моделирование, численные методы и комплексы программ")
При прохождении сейсмической волны в трещиновато-пористой флюидонасыщенной среде возникают индуцированные волной флюидопотоки как между материалом трещин и вмещающей породой, так и между пересекающимися трещинами. Проявление потоков флюида в регистрируемых полях по сейсмическим характеристикам (в частности, частотно-зависимому затуханию волны) можно использовать для оценки транспортных свойств трещиноватого коллектора углеводородов и мобильности флюида в нем. Поскольку транспортные свойства трещиноватого коллектора главным образом определяются протяженными системами связных трещин, необходимо определить влияние именно глобальной связности в трещиноватых моделях на затухание сейсмической волны. Для этого разработан и реализован алгоритм генерации дискретной системы трещин с заданной длиной перколяции, основанный на методе имитации отжига с целевой функцией, включающей вероятность существования непрерывного пути по материалу трещин на заданное расстояние (перколяции на заданное расстояние) на всей системе трещин. На основе конечно-разностной аппроксимации системы уравнений Био в динамической постановке на сдвинутых сетках с использованием деконволюции сигналов разработан и реализован алгоритм численной оценки сейсмического затухания в анизотропных трещиновато-пористых флюидонасыщенных средах. Результатами численных экспериментов по распространению плоской продольной волны в трещиноватых пороупругих флюидонасыщенных средах показано влияние глобальной связности трещин, физических свойств наполнителя трещин, микромасштабной анизотропии среды на частотно-зависимое затухание сейсмической волны.