Заседания семинаров
Yandex Telemost
Д. А. Сбоев
Описание операторов композиции пространств Соболева в метрических пространствах с мерой. II
Аннотация
В докладе будет изложено детальное описание гомеоморфизмов, индуцирующих ограниченные операторы композиции пространств Соболева $\varphi^{*}:D^{1,p}(Y)\cap Lip(Y)\to D^{1,q}(X)$, $\varphi^{*}(u)=u \circ \varphi$, $1 \le q < p < \infty$.А. Кононов
MODeL: Memory Optimizations for Deep Learning.
Реферат статьи B. Steiner и др. (2023).
А. Н. Бородин
Квандл Джойса и его обобщение. Гипотеза о строении конечных квандлов.
Рублев Кирилл Дмитриевич (НГУ)
Реферат статьи Anil M. Shende Maximal induced paths and minimal percolating sets.
Д. С. Климентов (Южный федеральный университет, Ростов-на-Дону)
Стохастическая геометрия гладких поверхностей.
Аннотация
В докладе предлагается вероятностный подход к построению дифференциальной геометрии: доказывается, что при некоторых условиях два случайных процесса однозначно определяют гладкую поверхность. Предлагается, в качестве иллюстрации, стохастический критерий $k$-движения поверхности. Эти идеи позволяют, с некоторыми оговорками, перевести гладкую дифференциальную геометрию на стохастические рельсы.
С помощью предложенной техники также доказывается основная теорема теории поверхностей для поверхностей ограниченного искривления положительной кривизны.
Нестерова Ангелина Витальевна (аспирант, инженер-исследователь)
Количественная оценка патологических очагов при решении обратной задачи реконструкции изображений методом гамма-эмиссионной томографии.
Аннотация
В работе рассматриваются подходы к получению точной количественной оценки накопления радиофармпрепарата в патологических очагах при решении обратной задачи реконструкции изображений методом однофотонной эмиссионной компьютерной томографии (ОФЭКТ). Сравниваются стандартизированный итерационный алгоритм Ordered Subsets Expectation Maximization (OSEM), применяемый в большинстве современных ОФЭКТ-систем, и алгоритм Maximum a Posterioriс энтропийным функционалом(MAP-Ent), который в настоящее время используется преимущественно в исследовательских целях. Исследование выполнено методом имитационного компьютерного моделирования in silico с использованием цифрового двойника вещественного фантома NEMA IEC. Проведено сравнение алгоритмов по количественной точности реконструкции, сформулированы рекомендации по повышению точности при использовании алгоритма OSEM и направления дальнейшего развития метода MAP-Ent.Д. М. Анищенко (НГУ)
Логика, основанная на семантике квантовых тимов.
Аннотация
Установлено, что явления в квантовой механике имеют вероятностную природу. Например, мы не можем определить положение электрона в произвольный момент времени, но можем определить вероятностное распределение его положения, зная начальное распределение. Это можно интерпретировать, как отсутствие детерминизма в квантовой механике. Однако не все физики разделяли подобную интерпретацию. Ими была предложена концепция скрытых параметров, которые нельзя измерить, но которые однозначно определяют движение частиц. В 1964 году Джоном Стюартом Беллом было показано, что вне зависимости от наличия или отсутствия скрытых параметров есть некоторые вероятностные неравенства, которые можно экспериментально проверить, и в случае их нарушения можно сделать вывод об отсутствии скрытых параметров. Физиками Джоном Клаузером, Аланом Аспектом и Антоном Цайлингером были проведены эксперименты, которые показали нарушение неравенств Белла. За этот результат им была присуждена Нобелевская премия в 2022 году.
Неравенства Белла не нарушаются в классических вероятностных моделях. В частности, неравенства Белла выводятся в вероятностной логике Фагина, Хальперна и Мегиддо. Их нарушение означает, что для моделирования квантовой механики необходимы нестандартные вероятностные модели. В докладе речь пойдет о модифицированной вероятностной логике, в которой невыводимы неравенства Белла, и будет доказана теорема полноты для данной логики. Семантика данной логики задается в терминах квантовых тимов и является обобщением тим-семантики логики независимости, введенной Юко Ваананеном в 2007 году.
Сообщение основано на следующих работах:
[1] S. Abramsky and L. Hardy. Logical Bell Inequalities. Phys. Rev. A , 85(062114):1-11, 2012.
[2] T. Hyttinen, G. Paolini, J. Vaananen, Quantum team logic and Bell's inequalities. Rev. of Symb. Logic, V. 8, No. 4, 2015.
[3] J. T. Fokkens, On the reduction of quantum teams, MA thesis, University of Gothenburg.
- Данил Ермохин
Предельные теоремы для непрерывного по времени случайного блуждания.
Аннотация
В работе рассматриваются предельные теоремы для непрерывного по времени случайного блуждания. Исследуется сходимость по распределению для случая независимых, а также зависимых пар. Для рассмотрения случая зависимых пар привлекается теория Марковских полугрупп и их генераторов, благодаря которой удается доказать сходимость в более общем случае.
В работе используются статьи:
- В случае зависимых пар - В. Н. Колокольцов, Обобщенные случайные блуждания в непрерывном времени (CTRW), субординация временами достижения и дробная динамика,Теория вероятн. и ее примен., 2008, том 53, выпуск 4, 684–703.
- В случае независимых пар - Kotulski M. Asymptotic distribution of continuous-time random walks: a probabilistic approach. — J. Statist. Phys., 1995, v. 81, № 3/4, p. 777-792.
- Мария Токарева
Реферат статьи: Álvaro Cartea, Diego del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A: Statistical Mechanics and its Applications, Volume 374, Issue 2, 2007, Pages 749-763.
Аннотация
В докладе рассматривается обобщение классического дифференциального уравнения Блэка-Шоулза. На основе естественных предположений о динамике рискового актива выводится дифференциальное уравнение в частных производных с использованием дробных производных по пространственной переменной.

