Заседания семинаров
16.20 ч., к. 213, ИМ
Н. А. Люлько
Асимптотическая устойчивость гиперболических систем с граничными условиями, повышающими гладкость решений.
Аннотация
В работе рассматриваются смешанные задачи для гиперболических систем первого порядка с граничными условиями отражения. Выделен класс граничных условий, для которых соответствующие линейные задачи обладают свойством повышения гладкости решений. В случае квазилинейных задач соответствующие смешанные задачи обладают свойством стабилизации всех решений к нулю за конечное время, не зависящее от начальных данных (если гиперболическая система распавшаяся), или свойством экспоненциальной устойчивости (если гиперболическая система не распавшаяся).
16.30 ч., Yandex Telemost
V. N. Zhelyabin, A. P. Pozhidaev
Simple and semisimple finite-dimensional Novikov algebras and their automorphisms.
Аннотация
We prove that every finite-dimensional semisimple Novikov algebra is the direct sum of simple algebras, and every finite-dimensional simple Novikov algebra over an arbitrary filed of characteristic $p > 0$ is the Gelfand--Dorfman construction of an associative commutative differentiably simple algebra. The description of the automorphisms of such simple Novikov algebras over an algebraically closed field is reduced to the description of some special automorphisms of the initial associative commutative algebras.
14.30 ч., ауд. 417, ИМ
Романов В. Г.
Обратная задача для нелинейного уравнения переноса.
Аннотация
Рассматривается нелинейное уравнение переноса, содержащее коэффициент $q(x)$ при младшем нелинейном члене, зависящий от двух или трёх пространственных переменных. Изучается прямая задача для этого уравнения с данными на части боковой поверхности цилиндрической области. Решение этой задачи строится в явном виде. Доказывается единственность этого решения. Ставится задача о нахождении коэффициента $q(x)$ по некоторой информации о решении прямой задачи. Показывается, что эта обратная задача редуцируется к задаче рентгеновской томографии. Это открывает путь её эффективного численного решения.
18.30 ч., фойе конференц-зала, ИМ
Выступления аспирантов кафедры дифференциальных уравнений по результатам научных исследований.
13.00 ч., ауд. 344, ИМ
Минушкина Лилия Сергеевна (НГУ)
Периодические траектории динамических систем, моделирующих функционирование генных сетей (по материалам кандидатской диссертации, научный руководитель: д.ф.-м.н. Голубятников В. П.).
Аннотация
В докладе представлены результаты исследования поведения траекторий динамических систем кинетического типа. Рассматриваются системы, уравнения которых содержат ступенчатые функции, описывающие регуляторные связи в модели генной сети. Для таких динамических систем установлена монотонность отображения Пуанкаре, и с помощью этого свойства получены достаточные условия существования цикла, а в четырехмерном и шестимерном случае показано, что при найденных условиях цикл будет единственным и устойчивым в инвариантной области. В работе также изучаются модели генных сетей размерностей 3 и 6, в которых скорости синтеза и разложения веществ выражены нелинейными гладкими монотонными функциями. Для двух таких систем найдены условия существования цикла в окрестности единственной стационарной точки, построены инвариантные поверхности, ограниченные циклами.
16.20 ч., к. 213, ИМ
В. Н. Белых
Асимптотика александровского $n$-поперечника компакта бесконечно гладких функций на конечном отрезке.