Заседания семинаров
Google meet
И. А. Медных
Спектральные инварианты циклических накрытий графов и полиномы Чебышева.
Аннотация
Цель данного направления исследований — изучение инвариантов циклических накрытий графов. При этом, накрываемый граф предполагается фиксированным, а циклическая группа накрытия имеет сколь угодно большой порядок. Классическим примером таких накрытий являются циркулянтные графы. Они накрывают одновершинный граф с заданным числом петель.
Доклад посвящен получению аналитических формул, позволяющих вычислять характеристические полиномы Лапласа. Знание такого полинома позволяет определять ряд основных спектральных инвариантов графов. Например, число отмеченных остовных лесов и деревьев, находить их асимптотическое поведение при стремлении числа вершин к бесконечности, и изучать арифметические свойства возникающих здесь числовых последовательностей. Все указанные инварианты являются спектральными — их значения определяются спектром матрицы Лапласа.
Основным инструментом для доказательства полученных результатов выступают полиномы Чебышева. Основные формулы, а также их асимптотика эффективно выражаются через корни линейных комбинаций полиномов Чебышева.
Коновалова Д. С.
Построение и исследование математической модели процесса колебаний системы струн
Аннотация
В докладе будет рассмотрен процесс поперечных колебаний системы струн, т.е. струн, соединенных между собой в некоторых точках. Будут представлены два подхода к построению математической модели этого процесса: интегральный - основанный на законе сохранения количества движения, и дифференциальный, результатом которого является система дифференциальных уравнений с дополнительными условиями, отражающими специфику рассматриваемого процесса. Будут обсуждены преимущества, недостатки и перспективы использования каждого из этих подходов.
Для системы, состоящей из двух струн, будет рассмотрена прямая задача, существование и единственность решения которой установлена автором. Для систем двух и четырех струн будут представлены некоторые обратные задачи.
А. Ю. Перепечко
Алгебры Ли локально нильпотентных дифференцирований и максимальные унипотентные подгруппы в группах автоморфизмов аффинных многообразий
Аннотация
Пусть множество $А$ локально нильпотентных дифференцирований (ЛНД) на алгебре многочленов образует алгебру Ли. В одноимённой работе А. А. Скутина доказано, что $А$ с точностью до сопряжения лежит в подалгебре треугольных ЛНД при условии тривиальности пересечения ядер элементов $А$. Мы разберём схему доказательства и выведем следствие о подмножествах ЛНД на алгебре функций произвольного аффинного многообразия.
Опираясь на данный результат, мы опишем подгруппы, состоящие из унипотентных элементов, в группе автоморфизмов произвольного аффинного многообразия. Также мы представим ряд следствий из данного описания.
Сабельфельд К. К.
Непрерывные и дискретные стохастические численные методы решения многомерных краевых задач и некоторые приложения.
Н. А. Баженов
Об эффективной категоричности для вычислимых структур.
Zoom
Я. А. Копылов (ИМ СО РАН)
Об одномерных когомологиях Орлича общих дискретных групп.
Аннотация
В 2017 г. С. Истридж рассмотрел некоторые задачи, связанные с одномерными $l_p$-когомологиями общих (не обязательно счетных) дискретных групп. В докладе некоторые результаты Истриджа обобщаются на одномерные когомологии Орлича. Приводятся некоторые условия для тривиальности нередуцированных и редуцированных когомологий Орлича дискретной группы и для совпадения этих пространств.Е. М. Сурков
Генетический алгоритм для задачи снабжения АЗС топливом.